
FreeCAD
a free extensible CAx system

Jürgen Riegel

juergen.riegel@web.de
2002

Index

1Introduction.. 4

2Tutorial... 5

2.1General.. 5
2.1.1FreeCAD with the GUI.. 5
2.1.2FreeCAD in Command mode .. 5

2.2Part..7

2.3Mesh.. 7
2.3.1General... 7
2.3.2Scripting.. 7

3Specification.. 9

3.1Overview... 9
3.1.1Workbenches ... 9
3.1.2Feature-based parametric modeling..................................... 11
3.1.3User interface... 12

3.2Licence...12

3.3Framework.. 13
3.3.1Overview.. 13

4Design... 14

4.1Overview... 14
4.1.1Third party libraries... 15
4.1.2Console application.. 17
4.1.3Interactive application... 17

4.2Key Pattern.. 18
4.2.1Workbenches.. 18
4.2.2Features... 18

5Extending FreeCAD.. 19

5.1Introduction.. 19

5.2Macro recording... 20

5.3Python progrmming... 20

5.4Extending with C++... 20
5.4.1Application modules... 20
5.4.2Features... 20
5.4.3View Provider.. 20
5.4.4Branding.. 20

FreeCAD Manual - Page 2/20

FreeCAD Manual - Page 3/20

1Introduction

With the release of Open CasCade in 2000 the opportunity was
given to use this class librarie to plan and implement the first
fully featured free 3D CAD system for mechanical engineering.
For me was the point my experience on the CasCade Kernel and
the my work as a profesional programmer where I work more
with Powerpoint rather using the compiler.

Without experience in professional work one would have great
trouble to get into the concepts and algorithms of the CasCade
Kernel as a whole. So the plan is to provide a framework which
utilize the important packages of the CasCade Kernel (topology,
OCAF, I/O) and make it easy for people provide functionality at
here own level of skills. Anyway, to program a application with
the size and the function richness of a CAD package on your
own is perfectly impossible. So my hope is that this project
attract developers all over the world to contribute.

Also for me it’s a interesting thing, since I’m involved in
programming a CasCade application (in the field of reverse
engineering) at DaimlerChrysler, to use the lessons I’ve learned
and introduce them in a completely new design. This work is
done in my spare time and in no way related to DaimlerChrysler
or the Research department of DC I’m currently working.

Jürgen Riegel 2000

FreeCAD Manual - Page 4/20

2Tutorial

The first point will be a tutorial to enable the reader to use FreeCAD
on user level.

2.1General

2.1.1FreeCAD with the GUI
Most user will use FreeCAD with the Graphical User Interface
(Gui).

2.1.2FreeCAD in Command mode

Starting
For more sophesticated work and batch jobs or server work you
can start FreeCAD as a console application. Just type:

FreeCAD -c

and the Gui whont appear. Instad will FreeCAD promt you for
commands after the initialization has finished. There is also a
special executable for server and batch jobs:

FreeCADCmd

This has no grfical user interface et all and its there fore smaller
and need less resources.

FreeCAD Manual - Page 5/20

To start FreeCAD non interactive give a batch file as a
parameter:

FreeCAD -cf DoALongBatchJob.FCScript

This will cause FreeCAD to start imidatly the given file and
terminate when the script is finished. You can use batch files i.g.
For:
• automating often done jobs without user interaction like

updating large Assambly structures after changes or
converting thousends of files in an other format

• starting scripts which open a server and process transactions.
Python allows to opens TCP/IP ports and process requests
from other systems. Its also possible to instanciate a whole
webservice.

• Runing macros recordet with the user interface
• and so on

Interactive Command mode
After starting FreeCAD in with the -c option you will see
somthing like this:

FreeCAD (c) 2001 Juergen Riegel (GPL,LGPL)

 ##### #### ### ####
 # # # # # #
 # ## #### #### # # # # #
 #### # # # # # # # ##### # #
 # # #### #### # # # # #
 # # # # # # # # # ## ##
 # # #### #### ### # # #### ## ##

FreeCAD startup running....
 Checking on Environment...
FreeCAD startup done
Create Application
FreeCAD init running....
 Using ..\src\Mod as module path!
 Searching modules...

FreeCAD init done
[Console mode <ctrl-z and Enter exits>]
>>>

The last line is a python command prompt. As FreeCAD includes
a complet python interpreter you can use all python build in
features and modules.

FreeCAD Manual - Page 6/20

2.2Part
Here the Part Workbench, which includes the most CAD
functions.

2.3Mesh
The Mesh Module is dedicated to triangle mesh creation and
functions.

2.3.1General

2.3.2Scripting
Besides the way of using meshes with the document and the
GUI, it's also possible to use the mesh data and algorithems on
script level. Thats opens the way to do mesh calculations
in macros or just on the command line (FreeCADCmd.exe).

Basics
First of all you have to load the FreeCAD Mesh moule:

#import the Mesh functions
import Mesh
shows you the methodes of the Mesh module
dir(Mesh)

After that you can use all the functions in the mesh module

Import / Export

You can read / write following formates:
• STL (stero lithographie format)
• BMS (nativ binary, the evicent way to write read meshes)

Example:
m = Mesh.read("Something.stl")
Do something realy exiting with the mesh
m.write("Another.stl")

Algorithems

Python works only with references. That means:

m2 = m
creates no new mesh object. So some of the Algorithems creates
new meshes as a result, other just impact the existing one.

FreeCAD Manual - Page 7/20

You need to do:
m2 = m.copy()

to get a new, copied, mesh object.

Creating meshes
Bisides loading on the creation of mesh is a way to make a
mesh from scratch. The methode addFace() of the mesh object
can do the job:

create a new empty mesh
m = Mesh.newMesh()
build up box out of 12 facets
m.addFacet(0.0,0.0,0.0, 0.0,0.0,1.0, 0.0,1.0,1.0)
m.addFacet(0.0,0.0,0.0, 0.0,1.0,1.0, 0.0,1.0,0.0)
m.addFacet(0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,0.0,1.0)
m.addFacet(0.0,0.0,0.0, 1.0,0.0,1.0, 0.0,0.0,1.0)
m.addFacet(0.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0)
m.addFacet(0.0,0.0,0.0, 1.0,1.0,0.0, 1.0,0.0,0.0)
m.addFacet(0.0,1.0,0.0, 0.0,1.0,1.0, 1.0,1.0,1.0)
m.addFacet(0.0,1.0,0.0, 1.0,1.0,1.0, 1.0,1.0,0.0)
m.addFacet(0.0,1.0,1.0, 0.0,0.0,1.0, 1.0,0.0,1.0)
m.addFacet(0.0,1.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0)
m.addFacet(1.0,1.0,0.0, 1.0,1.0,1.0, 1.0,0.0,1.0)
m.addFacet(1.0,1.0,0.0, 1.0,0.0,1.0, 1.0,0.0,0.0)
scale to a edge langth of 100
m.scale(100.0)

This example shows how to build a cube out of 12 triangles. If
the vertexs are the same the triangles get topological conected.

Offset
This function creats an offset Mesh allong the Vertex normals.
That means

FreeCAD Manual - Page 8/20

3Specification

The Specification gives you an overview what we try to achieve.
What kind of functions and features FreeCAD should have.

3.1Overview
FreeCAD will be a general purpose 3D CAD modeller. The
development will be completely as Open Source. As a modern
3D CAX modellers it will have a 2D component to extract design
drawings from the 3D model, but 2D is not the focus, neither
are animation and organic shapes (Maya, 3D StudioMAX,
Cinema 4D). FreeCAD will aim directly to mechanical
engineering, product design and related features (like CatiaV4
and V5, and SolidWorks). It will be a Feature-Based
parametric modeler.

CAD modelers tend to become very large systems. They often
incorporate thausend of functions whis can be split in areas of
usage, like i.g.

There for a list of Features such a CAD modeller should have:

3.1.1Workbenches
Modern applications nowadays often have to much functionality
to show it to the user at once. Especially CAD modelers are

FreeCAD Manual - Page 9/20

known to have thausends of functions or more. Therefore its
much better to package the functions in so called
Workbenches show the user only the functions and controls he
need for the actual design step. This keeps the menus an
toolbars slim and easy to use. For the Feature-based modeling a
natural grouping has evolved:

• Sketcher
Constructing points, lines, arcs and free form curves on
base of a plane (2D) with the ability to define constrains
between them like dimensions, parallelism, coincidence,
and so on. . .

• Part Design
Functions for full parametric Solid Modelling like fuse, cut,
chamfers, fillets, holes, slots and rips based on Sketches

• Surface Design
Functions for Surface Modelling like extrudes, blends,
trimming, lofts and filling surfaces based on Sketches

• Assembly
Design Functions to assemble parts, designed in Surface
Design or Part Design, together to Assemblies. Its also
possible to define constrains between the Parts like axes,
contact, and so on. Also functions to test inter-sections
and movements (inverse cinematic)

• 2D Drawing Extraction
extract 2D drawings from the 3D Part or Assembly for
printing and plotting

• User defined Workbench
means the user can easily by macro recording and dialogs
customis his own Workbench for special purpose

Later on additional Workbenches could be:

• Rendering support
I/O support for RIB format for geometry and Shader, used
by renderer like BMRT

• Part Database
For storing and retrieving standard designs using a catalog
functionality with previewing sharing in work groups.

• FEM
Pre- and Postprocessor for meshing, defining constraints
and viewing results. Transparent usage of a freely
available FE simulation package (modal and stress
analyses)

• Special workbenches for:
Sheet metal design, moulding and casting tools

• And a whole lot more ….

FreeCAD Manual - Page 10/20

3.1.2Feature-based parametric modeling
Since the begining of CAD (Computer Aided Design) the
software and the key concepts of CAD have gone a long way. It
started with a bunch of not acociatat lines on the screen and
ends nowadays at the Feature-base parametric modeling.
Parametric modeling came up with the solid modelers. It allows
to base a design on a set of parameters and force the
recomputation of the geometry when the parameter change.
This also lead to constrains which are introdused to the model,
force a certain behaviour like parallelism. A constraint solver
keep the constrains in touch with the geometry.
The finall step whas to group certain parameters and often used
geometical pattern to a so called Feature. Which allow to
automice common task and give a higher level representation.
A FreeCAD Feature basically works that way:

A good example for a feature is a
hole. The input is the face of a solid
part and the creation point, and the
parameters are e.g. the diameter and
the depth. With this Specification the
Operation punch a hole in the solid
part (Input) and generate a solid part
with a hole (Output). If you change
either the Input or the parameters
the Operation get done again.
A Feature can be rather complex like
patterns or complete ribs.

This Features can freely linked
together to a model specification.
Like the example on the right side,
two Boxes are linked together with a
Union Feature.
The whole FreeCAD document is a
bunch of linked Features which have
input parameters and output
(shapes). One can see the docuement
as a geometrycal function and the
Features as the progamming steps.

FreeCAD Manual - Page 11/20

Feature

Specification
Parameters

Operation

Input
(TopoShape)

Output
(TopoShape)

Prev.
Feature

Output
TopoShape

Next.
Feature

Input
(TopoShape)

Union

X

Box

Part Shape

Shape

Shape

Y

Z

L

W

H

X

X

Box

Part

Y

Z

L

W

H

X

3.1.3User interface
Besides the functional features the ease of use of a application
is very important, there for the specification goes also for that
and defines some cornerstones for the user interaction:

• Workbenches
Its to much to show all the functions at once to the user.
Its much better to packaging function needed for certain
tasks together. That’s a Workbench. The appearance of a
Workbench consist of the Toolbar and menu layout as well
as the visual mode of the project tree view. So the
switching of the Workbench can nearly change the
complete appearance of the application.

• Guided selection
In CAD programs its very important to know what to select
in a function. There should always be a guidance for the
user and a clear response on wrong selection. This is first
a clear dialog box layout which shows clearly what to
select.

• Enough online Help ;-)
That includes detailed descriptions on workbenches and
functions as well as tutorials on best practice scenarios.

Also some important points for the usability of the application
itself:

• Familiar lockout
No fancy ”skins” and experimental controls no animations,
just a plain and simple MDI frame and all the menus at
the familiar place

• Customisation
There shut be a rich set of customisation mechanisms to
al-low the user to change the standard behaviour the way
he wish. That can be:

o A easy to use macro recording facility o
Implementation of parts of the application logic in a
script language to allow the user to change it o Allow
extensions implementation in a script language

• Modularity
The program must be one big block. Function and
Workbenches sould be loaded dynamically only when
needed

3.2Licence
I know that the discussion on the ”reight” licence for open
source occupied a significant portion of internet bandwidth and

FreeCAD Manual - Page 12/20

so is here the why , in my opinion, FreeCAD should have this
one.

 I chooses the LGPL and the GPL for the project and I know the
pro and cons about the LGPL and will give you some reasons for
that decision.

FreeCAD is a mixture of a Library and an Application, so the GPL
would be a little bit strong for that. It would prevent write
commercial modules for FreeCAD because it would prevent
linking with the FreeCAD base libs. You may ask why
commercial modules at all? Therefore Linux is good example.
Would Linux be so successful when the GNU C Library would be
GPL and therefore prevent linking against non GPL Applications?
And although I love the freedom of Linux but I want also use the
very good NVIDIA 3D graphic driver. And I understand and
accept the reasons of NVIDIA not give away here driver code.
We all work for companies and need payment or at least foot.
So for me a coexistence of open source and closed source
software is not a bad thing, when it obeys the rules of the LGPL.
I would like to see someone write a Catia import/export
processor for FreeCAD and distribute it for free or for some
money. I don’t like to force him to give more away as he want
to. That wouldn’t be neither good for him, nor for FreeCAD.

3.3Framework

3.3.1Overview
You can see FreeCAD as an Application but that’s only the half
of the truth. The executable itself has basically no modeling
function. It is more or less only a basic framework to allow
application modules to register and offer functions to the user.
So the FreeCAD executable is best named as a ”framework” for
embedding the functions.

3.4

FreeCAD Manual - Page 13/20

4Design

In opposite to the Specification the Design gives you a
discription of the system from a programmers point of view.
Here we got the description of the Packages and the key
concepts of the Program. For that purpose also the UML is used.

4.1Overview
The Application FreeCAD consists basically off following
Packages:

FreeCAD Manual - Page 14/20

As you see there are five bigger blocks:

• Third party libraries

• Console application

• Interactive application

• Additional data types and functions

• Additional application logic

Each block has his special function and use normally the
functions on the blocks below. In the following section the main
functions of the blocks and packages are described.

4.1.1Third party libraries
This are libraries which are not changed in the FreeCAD project.
They are basically used unchanged as a dynamic link library
(*.so or *.dll). If there is a change necessary or a wrapper class
is needed, then the code of the wrapper or the changed library
code have to be moved to the FreeCAD base package.

The used libraries are:

Python
Python is the primary scripting language and is used in the
whole application.

For example:

FreeCAD Manual - Page 15/20

Another
Application
Module YY

3rd Party
base libs

FreeCAD

Applications

3rd Party
base libs

FreeCAD

Application
Module XX

Additional Datatypes
- new Features
- Function driver
- Storage driver
- Attr ibutes (new Datastructures)

Additional Commands
- Mouse model
- Bitmaps
- Simple commands
- Feature commands
- Feature dialogs
- Command help

Workbench Visual
- GUI definition
- Preferences dialogs
- Tutorials (help system)
- Bench description (help)

Base App
Gui

Main

Python OCC Datam odel OCC OCAF QT 2.x OCC Visual

Additional Data XX

Add. Com m ands XX
Add. Gui

Libs

FreeCAD

Part Surface

Data Excange

Sketcher

Test

Reen Render

Depends dynamicly
to all of them

Add. Com m ands YY

Additional Data YY

Inter application
module dependency
(optional)

Overview Details

App Mod XX

App Mod YY

see Details

• Implement test scripts for testing on:

– memory leaks

– ensure presents of functionality after changes

– post build checks

– test coverage tests

• Macros and macro recording

• Implement application logic for standard packages

• Implementation of whole workbenches

• Dynamic loading of packages

• Implementing rules for design (Knowledge engineering)

• Doing some fancy Internet stuff like work groups and PDM

• And so on ...

Especially the dynamic package loading of python is used to
load at run time additional functionality and workbenches
needed for the actual tasks. For a closer look to python see:
www.python.org Why Python you may ask. There are some
reasons: So far I used different scripting languages in my
professional life:

• Perl

• Tcl/Tk

• VB

• Java

Python is more OO then Perl and Tcl, the code is not a mess like
in Perl and VB. Java isn’t a script language in the first place and
hard (or impossible) to embed. Python is well documented and
easy to embed and extend. It is also well tested and has a
strong back hold in the open source community.

OCC (Open CasCade)
OCC is a full featured CAD Kernel. Its originally developed by
Matra Datavision in France for the Strim (Styler) and Euclid
Quantum applications and later on made Open Source. It’s a
really huge library and makes a free CAD application possible in
the first place, by providing some packages which would be hard
or impossible to implement in a Open Source project:

• A complete STEP compliant geometry kernel

• A topological data model and all needed functions to work
on (cut, fuse, extrude, and so on. . .)

FreeCAD Manual - Page 16/20

• Standard Import- / Export processors like STEP, IGES,
VRML

• 3D and 2D Viewer with selection support

• A Document and Project data structure with support for
save and restore, external linking of documents,
recalculation of design history (parametric modelling) and
a facility to load new data types as a extension package
dynamically

To learn more about Open CasCade take a look at
http://www.opencascade.org.

QT (2.x +)
I don’t think I need to tell a lot about QT. Its one of the most
often used GUI toolkits in Open Source projects. For me the
most important point to use QT is the QT Designer and the
possibility to load whole dialog boxes as a (XML) resource and
incorporate specialized widgets. In a CAX application the user
interaction and dialog boxes a by far the biggest part of the
code and a good dialog designer is very important to easily
extend FreeCAD with new functionality. Further information and
a very good online documentation you’ll find on
http://www.troll.no.

4.1.2Console application
This is a executable which incorporates two important packages:

• FreeCAD Base
• FreeCAD Application

The console application is mainly for automated testing purpose,
but can also be used for server services. The packages used in
this application are completely GUI independent. The executable
runs without a X-Server and is able to load additional function
(trough python packages) and additional data types (trough OCC
plugins)

4.1.3Interactive application
One package more on top of the Console Application makes the
Interactive Application.

• FreeCAD Gui
This package brings the 3D and 2D Views, interactive selection,
a tree view on the document and the framework to load
workbenches. The Interactive application includes no modelling
function, only helper function and the basic views.

FreeCAD Manual - Page 17/20

4.2Key Pattern
In this Part I'w discribe the key design pattern used in FreeCAD.
They stands for a the most important features of FreeCAD, as
descriped in the Specification. Here a short introduction:
• Workbenches

Deals with the GUI outline. Handels layout of Toolbars,
Menues, Dockwindows and the Command Bar

• Features
Handels the whole parametric, asociativ modeling. Parameter,
recalculations and so on.

• Parameters
Loading and saving user- and system parameters. Changing
them in Dialog Boxes and Preferences Pages.

And here a more detailed description of the design:

4.2.1Workbenches
A Workbench is a object which mainly defines the whole
outlouck of a User Interface.

4.2.2Features
This pattern incorporate the whole functionality of a parametric,
asociativ modeling. The UML Layout of the Design you find in
the Design Draftings:
• FCApp Feature S

Is a layout of the most important classes for the Feature
pattern.

• FCApp Feature D
Is a dynamic view on the instanciated object in a document
tree. Here you see the runtime layout of the most imported
classes

FreeCAD Manual - Page 18/20

5Extending FreeCAD

5.1Introduction
One of the most importent key stone of FreeCAD are the
Application modules. FreeCAD itself is only a kind of library to
allow Application modules to introduce Commands and Features.
All build in functions are also Application modules!

There are diferent ways to extend FreeCAD. Easy ways and
more powerfull approches. Here a short introduction:

1. Macro recording

2. Python programming

3. C++ / Python programming

Every of the above methodes has its specific advantages and
disatvantages.

Macro recording is by far the easiest way to create new
functions, but limitid to existing features. Its only possible to
assamble existing features and functions to new and more
powerfull commands. Its not possible to create new Features
and Datatypes.

Python gives you much more possibilities. Its possible to create
new Features and Commands, using all functions exportet from
FreeCAD. In addition to this its also possible to use all the
python packages out there. And that are realy a lot. From ZIP lib

FreeCAD Manual - Page 19/20

to more sophisitcated ones like whole webserver and
webservices.

But the most powerfull extension you can only build with C++.
There you can use every feature of OpenCasCade, FreeCAD and
additional third party libraries. Also C++ is the right choice if
you whant to make very time consuming algorithems.

5.2Macro recording

5.3Python progrmming

5.4Extending with C++

5.4.1Application modules

5.4.2Features

5.4.3View Provider
View Provider are resposibel for the visualization of a (new)
Feature. It also manage the graphical interaction (editing) for a
special or group of Features.

5.4.4Branding
 Branding is easy speaking a way to hide FreeCAD into a simpler
Application. Offten its not whanted to show the user the
complexity of the whole FreeCAD and all its Workbenches. Its a
good Idea to show him e.g. only one special Workbench which is
needed for the purpose of the Application.

FreeCAD Manual - Page 20/20

