

Available online at www.sciencedirect.com

ENERGY

Energy 32 (2007) 2420-2427

www.elsevier.com/locate/energy

Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation

M. Halmann^{a,*}, A. Frei^c, A. Steinfeld^{b,c}

^aDepartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel ^bDepartment of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland

^cSolar Technology Laboratory, Paul Scherrer Institute, Villigen 5232, Switzerland

Received 7 September 2006

Abstract

The production of aluminum by the electrolytic Hall-Héroult process suffers from high energy requirements, the release of perfluorocarbons, and vast greenhouse gas emissions. The alternative carbothermic reduction of alumina, while significantly less energyintensive, is complicated by the formation of aluminum carbide and oxycarbides. In the present work, the formation of Al, as well as Al₂OC, Al₄O₄C, and Al₄C₃ was proven by experiments on mixtures of Al₂O₃ and activated carbon in an Ar atmosphere submitted to heat pulses by an induction furnace. Thermochemical equilibrium calculations indicate that the Al₂O₃-reduction using carbon as reducing agent is favored in the presence of limited amounts of oxygen. The temperature threshold for the onset of aluminum production is lowered, the formation of Al_4C_3 is decreased, and the yield of aluminum is improved. Significant further enhancement in the carbothermic reduction of Al_2O_3 is predicted by using CH_4 as the reducing agent, again in the presence of limited amounts of oxygen. In this case, an important by-product is syngas, with a H₂/CO molar ratio of about 2, suitable for methanol or Fischer–Tropsch syntheses. Under appropriate temperature and stoichiometry of reactants, the process can be designed to be thermo-neutral. Using alumina, methane, and oxygen as reagents, the co-production of aluminum with syngas, to be converted to methanol, predicts fuel savings of about 68% and CO₂ emission avoidance of about 91%, vis-à-vis the conventional production of Al by electrolysis and of methanol by steam reforming of CH₄. When using carbon (such as coke or petcoke) as reducing agent, fuel savings of 66% and CO₂ emission avoidance of 15% are predicted. Preliminary evaluation for the proposed process indicates favorable economics, and the required high temperatures process heat is readily attainable using concentrated solar energy. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Alumina; Aluminum; Aluminum carbide; Aluminum oxycarbides; Aluminum suboxide; Carbon; Carbon dioxide; Carbothermic reduction; Coke; Fischer–Tropsch; Fluorocarbons; Fuel saving; Graphite carbon-C(gr); Induction furnace; Methane; Methanol; Petcoke; Syngas; Thermochemical equilibrium; Thermo-neutral

1. Introduction

Aluminum is currently produced industrially via the Hall–Héroult process by dissolving Al_2O_3 in fused NaF–AlF₃ (cryolite) followed by direct current electrolysis, in which CO_2 is discharged at a sacrificial carbon anode and Al is deposited at the bottom of the cell. The production of each kg of Al

requires the consumption of 0.4–0.5 kg of the carbon anode [1]. The main drawbacks of the electrolytic production are its very high energy consumption (0.186 GJ/kg Al), the release of perfluorocarbons, and the high specific $CO_{2-equiv}$ emissions (7.42 kg $CO_{2-equiv}$ /kg Al) [2]. The greenhouse gas emission by the electrolytic Al production contributes 2.5% to the world anthropogenic $CO_{2-equiv}$ emissions [3]. Much effort has been spent to achieve the carbothermic reduction of Al_2O_3 to metallic Al. Using carbon or CH_4 as reducing agents, the overall reactions can be represented by

Al₂O₃ + 3C = 2Al + 3CO,
$$\Delta H_{298 \text{ k}}^0 = 1344.1 \text{ kJ mol}^{-1}.$$
 (1)

Abbreviations: C(gr), Graphite carbon; CO₂-equiv, Carbon dioxide equivalent; MSR, Methane steam reforming; Petcoke, Petroleum coke; PDF, Powder diffraction file; Ton, Metric ton; WGS, Water–gas shift; XRD, X-ray diffraction

^{*}Corresponding author. Tel.: +97289471834; fax: +97289344124. *E-mail address:* m.halmann@weizmann.ac.il (M. Halmann).

^{0360-5442/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.energy.2007.06.002

Al₂O₃ + 3CH₄ = 2Al + 3CO + 6H₂,

$$\Delta H^0_{298 \text{ k}} = 1568.7 \text{ kJ mol}^{-1}.$$
 (2)

Reactions (1) and (2) are thermodynamically favorable at above 2320 and 1770K, respectively [4]. However, both reactions are complicated by the formation of aluminum carbide, Al₄C₃, and of the oxycarbides Al₂OC, and Al₄O₄C. At the ALCOA Corporation, a stack-type reactor was developed in which a charge of Al₂O₃ and C was inserted in a high-temperature upper reaction zone to form a liquid mixture of Al₂O₃ and Al₄C₃ that was then transferred to a lower reaction zone for the extraction of liquid Al. The total energy demand of 0.121 GJ/kg Al by this process for both electric energy and carbon consumption was thus significantly lower than that by the Hall-Héroult process. Replacement of the electrochemical process by carbothermic reduction of Al₂O₃ would decrease the total greenhouse gas emissions by at least 30% [5]. In spite of considerable effort, the carbothermic reduction of alumina to aluminum remains a formidable technical challenge, due to the high temperatures required, and to the formation of aluminum carbide and oxycarbide byproducts [2].

A differential thermal analysis method had been applied to study the aluminum–oxygen–carbon system at reduced pressures at 1700–2200 °C [6]. The results indicated that the direct reduction according to Eq. (1) did not occur. Instead, Al was proposed to be formed by the following steps occurring at progressively higher temperatures in the order listed, resulting in the overall reaction (1),

$$2Al_2O_3 + 3C = Al_4O_4C + 2CO,$$
 (3)

$$Al_4O_4C + 6C = Al_4C_3 + 4CO,$$
 (4)

$$Al_4O_4C + Al_4C_3 = 8Al + 4CO.$$
 (5)

The present work examines the thermodynamic constraints for achieving the carbothermic reduction of Al_2O_3 to Al by combining it with the exothermic partial oxidation of either methane to H₂ and CO, or of carbon to CO,

$$CH_4 + \frac{1}{2}O_2 = CO + 2H_2, \quad \Delta H^0_{298 \, k} = -35.7 \, kJ \, mol^{-1},$$

(6)

$$C + \frac{1}{2}O_2 = CO, \quad \Delta H^0_{298 k} = -110.5 \, kJ \, mol^{-1}.$$
 (7)

The conditions were determined for avoiding or minimizing the formation of Al_4C_3 and of the partial reduction byproducts, such as Al_2O and AlO. The approach taken is analogous to that used for the carbothermic reduction of iron and zinc ores to the corresponding metals, and for the calcination of limestone, combined with the reforming/ partial oxidation of CH_4 [7–10]. These thermodynamic constraints seem not to have been reported previously. In addition, experiments were performed to find conditions suitable for the application of concentrated solar energy to the production of aluminum.

2. Experimental tests

In the present work, the carbothermic reduction of Al_2O_3 mixed with activated carbon was examined initially by thermogravimetry coupled with gas chromatography of gaseous products, and by heating the above mixtures in an induction furnace.

2.1. By thermogravimetry:

A mixture of Al₂O₃ (Alfa Aesar) and active carbon (Fluka 5105, ca. 85%) (molar ratio 1:3) in a graphite crucible was placed into the sample holder of a hightemperature thermogravimeter (Netzsch STA 409) under a constant Ar flow of 200 ml/min. Evolved gases were sampled every 3 min for gas chromatography (MTI Micro GC P200, equipped with a MS 5A column and a TC detector). The temperature was raised at a rate of $40 \,^{\circ}\text{C}/$ min until 1550 °C, and then kept at this temperature for 10 h. The observed weight loss was 54.0% of that required from Eq. (1), and the amount of CO determined by gas chromatography was 15% of the theoretical. The residue in the crucible was identified by XRD to consist mainly of Al_4C_3 . No Al was detected on the walls of the reactor. This analysis was performed using a Philips X'Pert MPD/ DY636 instrument, and identification of peaks was carried out with the Philips Analytical Software for XRD. In a similar experiment, the reactants were kept for 17h at 1766 °C, resulting in a weight loss of 71.4%, again without formation of Al.

2.2. By induction furnace heating:

The mixture of Al_2O_3 and active carbon (135 mg; molar ratio 2:9) was placed in a glassy carbon crucible (SIGRADUR G; inner diameter 9mm, wall thickness 3mm) supported on an Alox holder in a vertical quartz tube (inner diameter 31 mm) under an Ar flow of 5 lit/min, surrounded by the induction furnace (BBC Co., Model IG 261 W-18). The sample was exposed to heat pulses of 30 s at a power level of 18 kW. The deposit formed on the cold section of the quartz wall was determined by XRD to contain Al_2OC , Al, and Al_4C_3 (see Fig. 1). The XRD spectrum of the residue in the crucible (Fig. 2) was attributed to Al₄O₄C, Al₂OC, and AlN. The formation of the Al-oxycarbides is in agreement with previous reports [6]. The AlN production indicates some air leakage into the reaction chamber. The confirmation of the production of elementary Al on the quartz wall is based on the observed intensity ratio of 80.0/37.0 = 2.16 for the two major peaks at 2Theta 49.027° and 57.179°. This is closely similar to the reported ratio of 100.0/47.0 = 2.13 for the two largest peaks for pure Al (PDF-No. 00-004-0787) at 2Theta 48.919° and 57.147°. The temperature in the crucible was determined indirectly by using the melting points of selected materials.

Fig. 1. XRD spectrum of the wall deposit after induction furnace heating of an Al₂O₃-active carbon mixture.

Fig. 2. XRD spectrum of the crucible residue after induction furnace heating of an Al₂O₃-active carbon mixture.

It was within the range of 2248 K (m.p. CaTiO₃) and 2319 K (m.p. Al₂O₃).

3. Thermodynamic analysis

Thermochemical equilibrium calculations were performed using the CET85 and FactSage program codes [11,12], assuming closed systems. Results were expressed as mole fractions against temperature, all at 1 bar pressure. Products with mole fractions of less than 10^{-5} were not considered. Reaction enthalphies were calculated using the data of the NIST chemistry web-book [13]. Substantial reduction of Al₂O₃ to Al was found to occur only above the melting point of Al, 933.5 K, and to be almost complete only close to the boiling point, 2767 K. Four different cases were examined with respect to CO₂ emission avoidance, fuel saving, and economics—all for a proposed annual plant supplied with 0.102×10^6 ton Al₂O₃—with initial reactants described by: (a) Al₂O₃ + 4CH₄ + 0.4O₂; (b) Al₂O₃ + 4C + 0.6O₂; (c) Al₂O₃ + 28.9C + 13O₂; (d) Al₂O₃ + 4C.

3.1. Reaction of alumina with carbon

The carbothermic reduction of Al_2O_3 is simulated with an initial reaction mixture of $Al_2O_3 + 4C$. The equilibrium composition in the temperature range 1800–2800 K is presented in Fig. 3. CO is not shown. Al is formed at above 2300 K, Al_4C_3 is used up at above 2600 K, and C(gr) is still present even at 2800 K. At 2700 K, the reaction can be described by,

$$Al_2O_3 + 4C = 1.71Al(g) + 0.13Al_2O(g) + 0.01Al_2(g) + 2.87CO(g) + 1.13C(gr).$$
(8)

The excess of unused carbon appears as the product C(gr). The yield of Al according to Eq. (8) is 85.4%.

3.2. Reaction of alumina with carbon and oxygen

The carbothermic reduction of Al_2O_3 is examined using a small excess of carbon (such as coke, petcoke, or

Fig. 3. Equilibrium composition as a function of temperature for the system $Al_2O_3 + 4C$ at 1 bar total pressure.

charcoal) in the presence of a limited amount of O_2 . The temperature dependence of the equilibrium composition in the range 1800–2800 K is presented in Fig. 4. The main gaseous product, CO, is not shown. Al₂O₃ is reduced at above 2300 K, while Al and Al₂O are formed at above 2200 K. Al₄C₃ is unstable at above 2600 K, and is used up at 2700 K. At 2700 K, the calculated yield of conversion of Al₂O₃ to Al is 79.1%, and the net reaction is represented by,

$$Al_2O_3 + 4C + 0.6O_2 = 1.58Al(g) + 0.20Al_2O(g) + 0.01Al_2(g) + 4CO(g).$$
(9)

The reaction is endothermic by 1.66 GJ/kmol Al₂O₃. As shown in detail in Appendix A (Table A1) and assuming that the process heat is provided by combustion of coke, the proposed annual co-production of 0.0427×10^6 ton Al and 0.038×10^{6} ton CH₃OH-after partial water-gas shift of CO to H₂-requires a total input of 3.24×10^{6} GJ (or 0.099×10^6 ton coke), and releases 0.304×10^6 ton CO₂. The conventional separate production of the same amounts of Al and CH₃OH requires 7.942×10^{6} GJ [15] and $1.691 \times 10^{6} \text{ GJ}$ [16], respectively, or a total of 9.63×10^6 GJ. Thus, the fuel saving by the co-production relative to the conventional separate processes is 66.4%. In addition, the CO₂ emissions from the corresponding Al and CH₃OH productions are 0.3168×10^6 and 0.0397×10^6 ton CO₂, respectively, or a total of 0.357×10^6 ton CO₂. Thus, the CO₂ emission avoidance by the co-production relative to the conventional separate processes amounts to 14.8%.

Fig. 4. Equilibrium composition as a function of temperature for the system $Al_2O_3 + 4C + 0.6O_2$ at 1 bar total pressure.

Fig. 5. Equilibrium composition as a function of temperature for the system $Al_2O_3+28.9C+13O_2$ at 1 bar total pressure.

3.3. Reaction of alumina with excess of carbon and oxygen

Using a considerable excess of carbon and oxygen relative to Al₂O₃, it is possible to arrive at conditions at which the reaction becomes thermo-neutral, i.e. the enthalpy change between products at a given reaction temperature and the reactants at ambient temperature equals zero. Such conditions were found using an initial mixture at 300 K and 1 bar, with molar ratio Al₂O₃ : C : O₂ = 1 : 28.9 : 13. The equilibrium composition of the system is shown by Fig. 5 for the 1800–2900 K range. The main gaseous product, CO, is not shown. Al is formed at 2100 K, while Al₂O₃ and C(gr) are used up at 2300 K and 2600 K, respectively. At 2800 K, the reaction becomes slightly exothermal. At 2815 K, the net reaction is represented by

$$Al_2O_3 + 28.9C + 13O_2 = 1.80Al(g) + 0.10Al_2O(g) + 0.002Al_2(g) + 28.9CO(g).$$

(10)

Under these conditions, the yield of Al from Al_2O_3 would be 90.0%, and the product mixture would be free of Al_4C_3 and C(gr).

As described in Appendix A (Table A2), the proposed annual co-production of 0.0486×10^6 ton of Al and of 0.277×10^6 ton methanol requires an input of 11.4×10^6 GJ $(0.347 \times 10^6$ ton) of coke, and results in the emission of 0.848×10^6 ton CO₂. The conventional separate production of the above amounts of Al and methanol requires 9.04×10^6 GJ and 11.0×10^6 GJ, respectively, or a total of 20.03×10^6 GJ. Thus, the fuel saving by the co-production relative to the conventional separate processes amounts to 43.1%. The CO₂ emission by the conventional production of such amounts of Al and methanol is 0.3606×10^6 and 0.290×10^6 ton CO₂, respectively, or a total of 0.651×10^6 ton CO₂. Thus, the excess CO₂ emission by the coproduction relative to the conventional separate processes amounts to 23.2%.

3.4. Reaction of alumina with methane and oxygen

The carbothermic reduction of Al_2O_3 is examined using a small excess of CH_4 (CH_4/Al_2O_3 molar ratio 4) and a very limited amount of oxygen ($O_2/CH_4 = 0.1$). The CH_4 concentration in the proposed initial gas mixture is thus 91%, much above the upper flammable limit of CH_4 in air, i.e. 15% [14]. The equilibrium composition as a function of temperature in the range of 1800–2900 K is presented in Fig. 6. Al_2O_3 is completely reduced, i.e. its mole fraction is less than 10^{-5} at above 2200 K, while Al and AlH are formed at 2000 K. Al_4C_3 is stable in the 2100–2400 K range. Carbon, as C(gr), is used up above 2500 K. The gaseous aluminum suboxide Al_2O starts to appear at 2000 K, is maximal at 2200 K, and disappears almost completely above

Fig. 6. Equilibrium composition as a function of temperature for the system $Al_2O_3 + 4CH_4 + 0.4O_2$ at 1 bar total pressure.

2900 K. Monoatomic hydrogen, H, starts to appear above 1800 K. At 2700 K, the net reaction is represented by

$$Al_2O_3 + 4CH_4 + 0.4O_2 = 1.81Al(g) + 0.12AlH(g) + 0.03Al_2O(g) + 7.54H_2(g) + 0.58H(g) + 3.77CO(g).$$
(11)

At this temperature, the monoatomic gaseous Al is accompanied by smaller amounts of the monovalent species AlH and Al₂O, while C(gr) is used up. H₂ is partially dissociated to monoatomic H. The calculated yield of conversion of Al₂O₃ to Al is 90.4%. The (H₂+0.5H)/CO molar ratio equals 2.08. Such a syngas mixture, when cooled down to about 700–800 K, would be suitable for methanol or Fischer–Tropsch syntheses. The reaction of Eq. (5) is moderately endothermic, requiring a process heat of 0.9 GJ/kmol Al₂O₃. No CO₂ would be released by this reaction. CO₂ emissions derived from the combustion of fossil fuels could be eliminated if concentrated solar energy is used as the source of high-temperature process heat.

As shown in Appendix A (Table A3), the estimated annual co-production of 0.0488×10^6 ton Al and 0.109×10^{6} ton CH₃OH requires a total fuel input (including process heat) of 4.475×10^{6} GJ, and releases 0.0451×10^6 ton CO₂. The conventional separate production of Al by the electrolytic Hall-Héroult process requires 186 GJ/ton Al, and causes the release of 7.42 ton CO_{2-equiv} per ton Al [6]. In addition, the separate production of methanol by steam-reforming of CH4 (MSR) requires 44.5 GJ of NG/ton methanol [15], and releases 1.044 ton CO_{2-equiv} per ton of methanol [16]. Thus, the conventional separate production of the above amounts of Al via electrolysis and of methanol via MSR would require 9.077×10^6 GJ and 4.851×10^6 GJ, respectively, or a total of 13.93×10^{6} GJ. The fuel saving by the proposed co-production relative to the conventional separate processes is 67.9%. Further, the separate production of such amounts of Al and CH₃OH releases 0.362×10^6 ton CO₂ and 0.114×10^6 ton CO₂, respectively, or a total of 0.476×10^6 ton CO₂. Thus, the CO₂ emission avoidance by the proposed co-production relative to the conventional separate processes amounts to 90.5%. The annual production of 0.0488×10^6 ton Al and of 0.109×10^6 ton methanol would cover 0.16% and 0.3% of the annual world production of Al [17] and methanol [18], respectively.

4. Discussion

In laboratory scale experiments, using inductance furnace heating, the carbothermic reduction of Al_2O_3 by activated carbon was demonstrated to produce Al, together

Initial reactants (mol)	Al (mol)	Al ₂ O (mol)	H ₂ (mol)	CO (mol)	C(gr) (mol)	Al ₄ C ₃ (mol)	% Al yield
	0.661	0.342	_	2.658	0.857	0.162	33.0
	0.881	0.456		3.544	0.309	0.049	44.0
	1.487	0.185	7.714	3.815	0*	0*	74.3

Table 1 Comparison of equilibrium compositions of reaction products at 2500 K and 1 bar from initial mixtures of 1 mol Al_2O_3 with either 4C, 4C+0.5O₂, or $4CH_4+0.5O_2$

*Less than 10⁻⁵moles.

with Al₂OC, Al₄C₃, and Al₄O₄C. Thermochemical equilibrium calculations were used to suggest further improved conditions for such reactions. Table 1 compares the predicted production of Al in three reaction systems at 2500 K. The carbothermic reduction of Al₂O₃ by carbon, both in the absence and presence of oxygen, would involve the formation of substantial amounts of Al_4C_3 . By contrast, the reduction of Al_2O_3 by CH_4 in the presence of oxygen not only would markedly increase the yield of Al, but also would co-produce a useful H2-CO mixture and inhibit the production of Al_4C_3 or C(gr). The favorable effect of the addition of limited amounts of oxygen are due to the exothermic partial oxidation of carbon or CH₄, which compensates partially or fully for the endothermic carbothermic reduction of Al₂O₃. The co-production of syngas and metals such as Al, Fe, and Zn could provide considerable fuel savings along with a substantial mitigation of CO_2 emissions [19,20]. The application of concentrated solar energy as the source of process heat could further eliminate greenhouse gas emissions derived from the combustion of fossil fuels. High temperature thermochemical processes carried out in solar furnaces included the carbothermal reductions of Fe₃O₄, MgO, and ZnO with C(gr) and CH₄ to produce Fe, Mg, and Zn, respectively, the carbothermal reductions of Al₂O₃, CaO, SiO₂, and TiO₂ with C(g) in an inert atmosphere to produce Al₃C₄, CaC₂, SiC, and TiC, respectively, and the carbothermal reductions of Al_2O_3 , SiO_2 , TiO_2 , and ZrO_2 with C(g) in a N_2 atmosphere to produce AlN, Si₃N₄, TiN, and ZrN, respectively [21-29]. The tentative economic evaluations described in the Appendix A suggest favorable competitiveness, which is mainly due to the fuel saving attained by the co-production of aluminum and syngas. Further work is warranted, particularly on the kinetics of these reactions and on the recovery of metallic aluminum from the gas phase.

Appendix A

The tentative economic evaluations are shown in Tables A1–A3.

Table A1

Economic evaluation for aluminum and methanol production from an initial mixture of alumina, coke (represented by carbon), and oxygen, initially at 300 K and 1 bar, calculated to be transformed at 2815 K and 1 bar according to $Al_2O_3+4C+0.6O_2 = 1.58Al+0.20Al_2O+0.01Al_2+4CO$. After 2/3 WGS of CO to H₂, the resulting syngas would be converted to methanol. Ton = metric ton

Design parameters	
Design Al_2O_3 feed (ton/yr)	0.102×10^{6}
Annual coke feed (ton/yr)	0.048×10^{6}
Annual coke feed $(GJ/yr)^{a}$	1.57×10^{6}
Annual process heat (GJ/yr)	1.67×10^{6}
Total fuel feed (GJ/yr)	3.24×10^{6}
Annual O ₂ feed (ton/yr)	0.0192×10^{6}
Annual Al production (ton/yr)	0.0427×10^6
Annual methanol production (ton/yr) ^b	0.038×10^{6}
Total annual CO ₂ release (ton/yr) ^c	0.304×10^6
Capital costs (million US\$)	
Equipment and facility ^d	50.0
Interest during construction (10% of facility	5.0
investment)	
Start-up expenses and working capital (10%)	5.0
Total	60.0
Annual costs (million US\$)	
Capital cost (15% of total)	9.0
Operation and maintenance (2% of total)	1.2
Coke cost (US\$130/ton) ^e	6.2
$Al_2O_3 \cos t (US\$33.6/ton)^f$	34.3
$O_2 \cos (US\$40/ton)^g$	16.6
Total	67.3
Annual sales (million US\$)	
Aluminum (US\$2800/ton) ^h	119.6
Methanol (US\$336/ton) ⁱ	12.8
Total	132.4

 a Taking as the HHV of coke the value for graphite, 0.3935 GJ/kmol. b Assume 90% overall yield in WGS of 2/3 of CO to syngas, and its conversion to methanol.

^dEstimated total cost, including the high-temperature reactor, heat exchanger, WGS reactor, and methanol synthesis reactor.

^eNovember 2005; see www.eia.doe.gov/cneaf

¹April 2007; alumina price usually linked 11–13% to the LME aluminum price. See www.globalalumina.com

^gL. Basye, S. Swaminathan, "Hydrogen Production Costs", 1997; Report DOE/GO/101-778.

^hApril 2007, London Metal Exchange; see www.lme.com

ⁱApril 2007; see www.methanex.com

^cIncl. CO_2 from the combustion of process heat fuel, assumed to be coke.

Table A2

Economic evaluation for aluminum and methanol production from an initial mixture of alumina, coke (represented by carbon), and oxygen, initially at 300 K and 1 bar, calculated to be transformed in a thermoneutral reaction at 2815 K and 1 bar according to $Al_2O_3 + 28.9$ C + 13O₂ = 1.80Al + 0.10Al_2O + 28.9CO. After 2/3 WGS of CO to H₂, the resulting syngas would be converted to methanol. Ton = metric ton

Design parameters	
Design Al_2O_3 feed (ton/yr)	0.102×10^6
Annual coke feed (ton/yr)	0.347×10^{6}
Annual coke feed (GJ/yr) ^a	11.4×10^{6}
Annual coke feed (mmbtu/yr)	10.9×10^{6}
Annual O_2 feed (ton/yr)	0.416×10^{6}
Annual Al production (ton/yr)	0.0486×10^{6}
Annual methanol production (ton/yr) ^b	0.277×10^{6}
Annual CO ₂ release (ton/yr)	0.848×10^{6}
Capital costs (million US\$)	
Equipment and facility ^c	50.0
Interest during construction (10% of facility	5.0
investment)	
Start-up expenses and working capital (10%)	5.0
Total	60.0
Annual costs (million US\$)	
Capital cost (15% of total)	9.0
Operation and maintenance (2% of total)	1.2
Coke cost (US\$130/ton) ^d	45.1
$Al_2O_3 \cos t (US\$336/ton)^e$	34.3
$O_2 \cos (US\$40/ton)^f$	16.6
Total	106.2
Annual sales (million US\$)	
Aluminum (US\$2,800/ton) ^g	136.1
Methanol (US\$336/ton) ^h	93.1
Total	229.2

^aTaking as the HHV of coke the value for graphite, 0.3935 GJ/kmol.

^bAssume 90% overall yield in WGS of 2/3 of CO to syngas, and its conversion to methanol.

^cEstimated total cost, including the high-temperature reactor, heat exchanger, WGS reactor, and methanol synthesis reactor.

^dNovember 2005; see http://www.eia.doe.gov/cneaf

^cApril 2007; alumina price usually linked 11–13% to the LME aluminum price. See www.globalalumina.com

^fL. Basye, S. Swaminathan, "Hydrogen Production Costs", 1997; Report DOE/GO/101-778.

^gApril 2007, London Metal Exchange; see www.lme.com

^hApril 2007; see www.methanex.com

Table A3

Economic evaluation for aluminum and methanol production from an initial mixture of alumina, NG (natural gas), and oxygen, initially at 300 K and 1 bar, calculated to be transformed in a thermo-neutral reaction at 2700 K and 1 bar according to $Al_2O_3 + 4CH_4 + 0.4O_2 = 1.81A1 + 0.12A1 + 0.03Al_2O + 7.54H_2 + 3.77CO$. The resulting syngas would be converted to methanol. Ton = metric ton

Design parameters	
Design Al ₂ O ₃ feed (ton/yr)	0.102×10^{6}
Annual NG reaction feed (GJ/yr) ^a	3.563×10^{6}
Annual process heat (GJ/yr)	0.912×10^6
Total fuel feed (GJ/yr)	4.475×10^{6}
Total fuel feed (mmbtu/yr)	4.242×10^{6}
Annual O ₂ feed (ton/yr)	0.0128×10^{6}
Annual Al production (ton/yr)	0.0488×10^{6}

Table A3 (continued)

Design parameters	
Annual methanol production (ton/yr) ^b	0.109×10^{6}
Annual CO ₂ release (ton/yr) from proc. heat ^e	0.0451×10^{6}
Capital costs (million US\$)	
Equipment and facility ^d	50.0
Interest during construction (10% of facility investment)	5.0
Start-up expenses and working capital (10%)	5.0
Total	60.0
Annual costs (million US\$)	
Capital cost (15% of total)	9.0
Operation and maintenance (2% of total)	1.2
NG cost (US\$7.415/mmbtu) ^e	31.5
$Al_2O_3 \cos t (US\$336/ton)^f$	34.3
$O_2 \cos t (US\$40/ton)^g$	0.5
Total	76.5
Annual sales (million US\$)	
Aluminum (US\$2800/ton) ^h	136.6
Methanol (US\$336/ton) ⁱ	36.6
Total	173.2

^aTaking as the HHV of NG 0.8908 GJ/kmol.

^bAssume 90% yield in methanol synthesis.

^cOnly from the process fuel, assumed to be NG.

^dEstimated total cost, including the high temperature reactor, heat exchanger, and methanol synthesis reactor.

eApril 2007; see: New York Mercantile Exchange, www.nymex.com

^fApril 2007; alumina price usually linked 11–13% to the LME aluminum price. See www.globalalumina.com

^gL. Basye, S. Swaminathan, "Hydrogen Production Costs", 1997; Report DOE/GO/101-778.

^hApril 2007, London Metal Exchange; see www.lme.com

ⁱApril 2007. See Methanex Corporation, www.methanex.com

References

- Frank WB, et al. Aluminum. In: Ullman's encyclopedia of industrial chemistry, vol. A1. VCH Publishers; 1985. p. 459.
- [2] (a) Choate WT, Green JAS. US energy requirements for aluminum production: historical perspective, theoretical limits and new opportunities, January 2003. See: www.secat.net/docs/resources>;
 - (b) Choate W, Green J. Technoeconomic assessment of the carbothermic reduction process for aluminum production. Light Met 2006;445–450.
- [3] Steinfeld A, Thompson G. Solar combined thermochemical processes for CO₂ mitigation in the iron, cement, and syngas industries. Energy 1994;19(10):1077–81.
- [4] Steinfeld A. High-temperature solar thermochemistry for CO₂ mitigation in the extractive metallurgical industry. Energy 1997;22: 311–6.
- [5] (a) Cochran CN, Fitzgerald NM. Energy efficient production of aluminum by carbothermic reduction of alumina (Aluminum Co. of America, Japan). US (1981). CODEN: USXXAM US 4299619 A 19811110. Patent Application: US 80-125644 19800228;
 - (b) Myklebust H, Runde P. Greenhouse gas emissions from aluminum carbothermic technology compared to Hall–Heroult technology. Light Met 2005:519–22.
- [6] Cox JH, Pidgeon LM. The aluminum-oxygen-carbon system. Can J Chem 1963;41:671–83.
- [7] Halmann M, Frei A, Steinfeld A. Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons. Energy 2002;27(12):1069–84.

- [8] Halmann M, Steinfeld A. Thermo-neutral co-production of calcium oxide and syngas by combined decomposition of calcium carbonate and partial oxidation—CO₂ reforming of methane. Energy Fuels 2003;17(3):774–8.
- [9] Halmann M, Steinfeld A. Combined thermo-neutral processes for CO₂ emission avoidance and fuel saving in the metallurgical and lime industries. Stud Surf Sci Cataly 2004;153:481–6.
- [10] Halmann M, Steinfeld A. Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal. Energy 2006;31:1533–41.
- [11] Gordon S, McBride JB. NASA SP-273, NASA Lewis Research, Cleveland, OH, 1976. A PC version prepared by T. Kappauf, M. Pipho, and E. Whitby for E. A. Fletcher at the University of Minnesota was used in the present study.
- [12] Thermochemical Software & Database Package FactSage, Centre for Research in Computational Thermochemistry, Ecole Polytechnique de Montreal, Canada, <www.crct.polymtl.ca>.
- [13] National Institute of Standards and Technology, Standard reference data program, chemistry webbook, < http://webbook.nist.gov/chemistry>.
- [14] Handbook of chemistry and physics. 85th ed. CRC Press: Boca Raton, Florida; 2004–2005, pp. 16–17.
- [15] Hiller H, et al. Gas Production. In Ullmann's encyclopedia of industrial chemistry, vol. A12. VCH Publ. 1989. p. 289.
- [16] Werder M, Steinfeld A. Life cycle assessment of the conventional and solar thermal production of zinc and synthesis gas. Energy 2000;25: 395–409.
- [17] London Metal Exchange on December 2005. See: (www.lme.com).
- [18] See: $\langle http://www.methanol.org \rangle$.
- [19] Halmann M, Steinberg M. Greenhouse gas carbon dioxide mitigation: science and technology. Boca Raton, Florida: Lewis Publishers; 1999. p. 261.

- [20] Murray J. Investigation of opportunities for high-temperature solar energy in the aluminum industry. Subcontract Report, NREL/ SR-550-39819, May 2006. See http://www.osti.gov/bridge>.
- [21] Steinfeld A, Fletcher EA. Theoretical and experimental investigation of the carbothermic reduction of Fe₂O₃, using solar energy. Energy 1991;16:1011–9.
- [22] Steinfeld A, Kuhn P, Karni J. High temperature solar thermochemistry: production of iron and synthesis gas by Fe₃O₄-reduction with methane. Energy 1993;18:239–49.
- [23] Steinfeld A, Frei A, Kuhn P. Thermoanalysis of the combined Fe₃O₄reduction and CH₄-reforming processes. Metall Mater TransB 1995;26:509–15.
- [24] Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D. A solar chemical reactor for the co-production of zinc and synthesis gas. Energy 1998;23:803–14.
- [25] Kräupl S, Steinfeld A. Operational performance of a 5kW solar chemical reactor for the co-production of zinc and syngas. ASME J Solar Energy Eng 2003;125:124–6.
- [26] Osinga T, Olalde G, Steinfeld A. Solar carbothermal reduction of ZnO: shrinking packed-bed reactor modelling and experimental validation. Ind Eng Chem Res 2004;43:7981–8.
- [27] Duncan DA, Dirksen HA. Calcium carbide production in a solar furnace. SERI/TR-98326-1, Golden, CO, 1980.
- [28] Murray JP, Steinfeld A, Fletcher E. Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides. Energy 1995;20: 695–704.
- [29] Murray JP. Solar production of aluminum by direct reduction of ore to Al–Si alloy: preliminary results for two processes. J Solar Energy Eng 2001;123:125–32.