VSBK DESIGN OPTION Guidelines

VSBK Design Option Guidelines

Authors	: Heini Müller, Prabin Chhetri, Tobias Müller
Editors	: Karl Wehrle, Urs Hagnauer
Proofreader	: Madeleine Cannon
Illustrations	: Prabin Chhetri, Keshar Joshi
Layout and graphics	: Kiirtistudio
First edition	: September 2013
Contact	: Skat Foundation (info@skat.ch)

ISBN 978-3-908156-49-9 Copyrights © Skat, 2013

This document is not intended to be a construction guide and entrepreneurs who consider constructing a VSBK are strongly advised to contact an experienced local or regional VSBK expert/consultant.

Contents

$Acknowledgements \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
Background
Purpose of this documentation
Potentials and limits of this documentation \ldots \ldots \ldots \ldots \ldots vii
Feedback and up-grading of this documentation
Overview of VSBK
01. Foundation
02. Unloading mechanism support unit
03. Trolley guide
04. Brick corbelling
05. Brick support I-beams
06. Girder system
07. Arch/slab
08. Shaft
09. Cavity between shaft and shaft support structure
10. Shaft support wall

11. Kiln insulation boxes
12. Peep-hole pipes
13. Outer kiln wall structure
14. Working platform
15. Flue-ducts
16. Shaft top structure 33
17. Emission exhaust system
18. Flue gas dampers/valves 36
19. Shaft lid
20. Unloading bars
21. Unloading trolley 42
22. Brick unloading system 43
23. Access to the working platform
24. Roof

Acknowledgements

The Vertical Shaft Brick Kiln (VSBK) development process documentation started during its applied Research & Development stage in 1997 and reached a first important milestone in the legendary "Brick by Brick - The Herculean Task of Cleaning up the Asian Brick Industry" in 2008. Yet the actual construction development process has been continued since. In particular the "South – South" VSBK technology transfer to South Africa lifted the VSBK technology significantly. Additional construction options have been realized that promote the VSBK technology as a globally recognized clean brick production system. However, the result of this process has until now never been systematically documented and updated.

Skat would like to express its sincere appreciation to Swiss Development Cooperation (SDC) for its continued support to the development of the VSBK technology and its adaption to specific local contexts. Without this persistent commitment and trust into the involved partners over a period of more than a decade the development of the VSBK technology as a technical and economical viable environment friendly alternative to traditional brick production systems would not have been possible. Skat likes to express sincere thanks to the piloting entrepreneurs from various countries who made the VSBK technology learning and development possible. Only through the spirit of VSBK pioneers, who were and are prepared to practically test new approaches and at the same time take some risks, the VSBK technology could be exposed and tested in the practical business environment.

Skat is also very grateful to all partner organizations and individual professionals from various countries, who each in their own way contributed towards important "puzzles" in order to up-grade and perfect the VSBK technology. They made a South-South technology transfer possible.

Special thanks to all those who contributed to the development and compilation of this documentation, in particular to the European experts in energy & environment, kiln construction and ceramics, Mr. Max Müller, Germany, Mr. Hans Schmid, Switzerland, Mr. Ekhard Rimpel, Germany, and Mr. Alois Müller, Switzerland, as well as to Mr. Urs Hagnauer, former VSBK Project Manager, Nepal. Last but not least Skat, as the partner in charge for the technology transfer to South Africa would also like to acknowledge the VSBK Project in South Africa which financed the development and publication of this document as well as our consortia partner, Swisscontact, who facilitated the project implementation.

Karl Wehrle

Skat Consultancy

Background

This publication is part of the ongoing efforts of the VSBK technology transfer process from Asia to South Africa. It is part of the tasks entrusted to Skat in an overall process of knowledge transfer. The focus of this publication are both the main design options as well as construction elements of the Vertical Shaft Brick Kiln. The VSBK is the most energy efficient coal fired clay brick production technology. Ever since SDC supported the systematic VSBK technology transfer from China to India in 1996 a lot of local and international VSBK working experience has been accumulated. In its quest to contribute to cleaner clay brick firing systems, and thereby to a cleaner environment, SDC also supported the VSBK technology transfer to Nepal, Vietnam, Afghanistan, Pakistan and since 2009 to South Africa.

In the VSBK technology transfer to the above mentioned countries, except to Vietnam, Skat Consultancy is the only international organisation that has been a constant partner to SDC's environmental endeavour since 1996. This professional trust was continually acknowledged by Skat Consultancy with its principle working strategy; to locally anchor the VSBK technology and thereby building local VSBK experts while at the same time creating and overseeing an international network of experts and specialists to sustain the VSBK technology as well as its constant improvements, documentation and international dissemination, therefore making best use of the investments made by SDC and all other partners.

The VSBK technology is not patented. Since its commercial, environmental and social development was financed by SDC this technology is considered an "open source" technology. The results of 17 years of VSBK design/construction experience and knowledge from all stages of the various VSBK technology transfers have been collected and compiled as **"VSBK Design Option Guidelines"**.

This documentation is the result of professional involvement of experienced European brick kiln experts with global VSBK technology experts and local practitioners/ entrepreneurs. Hence this documentation considers both; the current state-of-art brick kiln know-how at European level as well as globally applied practical and technical options. However, latest adaptations to local contexts by local experts in South Africa could not be included in this document since they are being claimed as intellectual property. Depending on interest they may be made available through a consultancy contract.

Purpose of this documentation

Through the SDC supported "South – South" VSBK technology transfer to South Africa new thinking, new views, new experts and thereby new potentials were leading to additional construction options. Awareness of the unique energy and environmental advantages of the VSBK technology is rapidly being disseminated at a global level. With this document, experts not only in South Africa but also at global level are enabled to make an educated decision of how to adapt the VSBK technology and therefore contribute towards an increased global VSBK demand while at the same time reducing the greenhouse gas emission from a polluting industrial sector.

The purpose of this documentation is to provide a general overview of different VSBK construction options and makes it clear that there is no 'One-size-fits-all'. For a profitable VSBK business experienced professionals should be involved who assess the appropriateness of a given option to a given situation and this document aims to be a valuable resource for decision makers.

Potentials and limits of this documentation

VSBK construction options are always linked to, and with the purpose of, brick firing and its related economics. Although numerous VSBK construction options are globally implemented by various organizations, experts and entrepreneurs, the authors utilized a two-shaft VSBK design as reference and purposefully limited the number of possible construction options in this document in order to focus on proven practical and economical practices. For individuals with limited access to high tech solutions and high up-front financial investment, for whatever reasons, current industrialized 'state of the art' kiln construction materials and techniques need to be down scaled into practical solutions. This documentation not only shows practical options but also presents potential future options that will require local fine-tuning for viable final adaption to the local context. It would be way out of the scope of this document to explain the detailed aspects of the VSBK construction. This document tries

to provide basic rationales and explanations where deemed essential. It is sometimes difficult to precisely and appropriately provide sketches and explanations to fully comprehend detailed construction drawings of different options. They can be made available through a consultancy contract with any of the VSBK technology service providers.

This document is not intended to be a construction guide and entrepreneurs who consider constructing a VSBK are strongly advised to contact an experienced local or regional VSBK expert/consultant.

Feedback and up-grading of this documentation

Any feedback and additional experiences regarding the various technical options is most welcomed and can be directed to Skat Foundation (info@skat.ch). Skat Foundation, along with the respective experts and authors, will accordingly secure future up-dates to this document and make the collected information available to a broader audience, with reference to the source of information.

Overview of VSBK

01 Foundation

- 02 Unloading mechanism support unit
- 03 Trolley guide
- 04 Brick corbelling
- 05 Brick support I-beams
- 06 Girder system
- 07 Arch/slab
- 08 Shaft
- 09 Cavity between shaft and shaft support structure
- 10 Shaft support wall
- 11 Kiln insulation boxes
- 12 Peep-hole pipes
- 13 Outer kiln wall structure
- 14 Working platform
- 15 Flue ducts
- 16 Shaft top structure
- 17 Emission exhaust system
- 18 Flue gas dampers/valves
- 19 Shaft lid
- 20 Unloading bars
- 21 Unloading trolley
- 22 Brick unloading system
- 23 Access to the working platform
- 24 Roof

FOUNDATION

Function

The foundation is the part of the VSBK that is in direct contact with the ground and through which structural loads, including the weight of green bricks, coal storage and movements are being transferred.

Design principles

A universal foundation design for all types of ground is technically and economically not feasible since key parameters vary according to the local situation and context. Therefore, the foundation has to be professionally designed, case by case and according to local contexts.

A VSBK should never be constructed on backfilled soil or landslide-prone areas. Special design precautions must be taken for areas having a high ground water table or earthquake experience.

OPTION 1 : R.C.C. raft foundation

(Suitable for non-cohesive soils)

Advantages

- Equal load distribution on any type of natural grown soil
- Employed working personnel can work on a clean and safe platform
- Ground water penetration can be minimized

Disadvantages & Limits

• Expensive construction option due to the use of mass concrete and reinforcement steel

FOUNDATION

01

OPTION 2 : Brick footing OPTION 3 : Pillar foundation (Suitable for cohesive soils) (Suitable for both cohesive and non-cohesive soils) **Disadvantages & Limits** Advantages **Disadvantages & Limits** Advantages • Suitable option for a frame • A Brick entrepreneur can use • Not applicable for all types of • Generally requires horizontal his/her own bricks for this grounds and especially not an structure VSBK construction concrete tie-beam connection foundation option and can optimal option in cases of high Considerable amounts of therefore optimize expenses ground water table shuttering material is required • Requires good brick quality • Depending on the required depth of the pillars a relatively expensive construction method • Demanding in skill (preciseness) and supervision

UNLOADING MECHANISM SUPPORT UNIT

Function

The unloading mechanism support unit accommodates the height of the hydraulic piston or screw, protects the unloading mechanism from potentially being blocked during operation and bears the load of the entire brick setting inside the shaft during unloading procedures.

Design principles

The unloading mechanism support unit must bear the entire brick setting load and its unloading system in such a way that no structural settings/ damages will hinder the unloading operation.

The related pit should be protected from the nearby filled soil and ground water so that the unloading mechanism can move freely.

OPTION 1 : M.S. I-beams

Note : M.S. I-beams are installed perpendicular to the arch walls in order to transfer the load of the bricks setting inside the shaft to the kiln foundation.

Advantages

- Economical option due to the utilisation of the arch wall foundations
- Can accommodate both hydraulic and manual unloading mechanisms

- Foreign material could fall into the pit structure which could create complications for unloading procedures and are likely difficult to clean
- In areas of high water table, a watertight pit structure should be ensured in order to avoid water contact with the unloading mechanism

UNLOADING MECHANISM SUPPORT UNIT

OPTION 2 : R.C.C. load bearing unit

Note : This unit is separated from the kiln structure. It bears the entire load of the brick setting inside the shaft on its own foundation.

Advantages

- Pit structure is maintenance friendly
- Does not utilise the arch wall foundation for support, its construction requires heavy duty concrete and steel reinforcement and is therefore considered expensive
- Only feasible on ground with sufficient bearing capacity

TROLLEY GUIDE

Function

The trolley guide assists in correctly positioning the trolley for unloading procedures and, when the unloading trolley is correctly positioned, acts as a safety feature to prevent unevenly loaded trolleys from toppling.

Design principles

The trolley guides are made with MS C-Channels and are properly anchored into the arch walls.

OPTION 1 : Recessed MS C-channels

Advantages

- Low wear & tear of the masonry walls during unloading
- Correct positioning of trolleys below the shaft is ensured
- Trolleys and the unloaded fired bricks are prevented from becoming wedged between the shaft supporting walls during unloading procedures

Disadvantages & Limits

 Wall corbellings are required near ground level, hence the wall construction becomes more labour intensive and therefore costly

TROLLEY GUIDE

OPTION 2 : Protruded M.S. C	-channels	FUTURE OPTION 1: Screwe	ed-on guides
 Advantages Wall brick corbelling is not required, hence the construction becomes less time consuming and therefore less costly 	 Disadvantages & Limits Chances of injuries during unloading procedures 	 Advantages Low construction cost Simplified trolley locks hence no movable parts Easy maintenance 	Disadvantages & Limits None

BRICK CORBELLING

Function

The brick corbellings increase the arch wall distance for unhindered unloading of the fired bricks and movement of the trolley

Design principles

The brick corbelling of a given brick course should ideally not exceed 3cm.

Wall corbellings can be made, but as a matter of fact, are optional depending on the quality of green bricks, firing and operation practices.

Since the arch masonry walls distance and the shaft size have different measurements the refractory shaft corbelling is advisable to avoid damages during operation.

OPTION 1 : Two arch wall corbellings

(1st and 2nd, on each side of the arch supporting walls)

Advantages

- Reduced risk of fired bricks tumbling from the unloading trolley
- Less wear & tear due to M.S.
 C-Channel trolley guides constructed flush with the arch wall support masonry

- Arch side wall brick corbelling construction becomes time consuming and therefore costly
- Could hinder pulling out the trolley due to the small gap of 3 cm between the wall and the trolley during emergency unloading

BRICK CORBELLING

OPTION 2 : Corbelling at refractory brick shaft level

Advantages

- Easy to pull and push the trolley due to increased side space
- Construction of the arch side walls is less time consuming and therefore less costly
- More economical because the shaft supporting corbelling layer can be constructed just before the first refractory brick layer of the shaft

Disadvantages & Limits

- Protruded M.S. C-channel trolley guides (see 3, option 2) must be fixed otherwise the trolley guide lock becomes too long which could be difficult during unloading
- Increased risk of fired bricks tumbling from the unloading trolley due to increased side space

BRICK SUPPORT I-BEAMS

Function

The brick support I-beam is the resting place for unloading bars and the girder system during operation. Between unloading procedures the beam supports the entire brick setting load inside the shaft and transfers it to the arch supporting wall.

Design principles

The brick support I-beams must be designed to carry the entire brick setting within the shaft.

The temperature at the unloading place can at times be as high as 400°C, which needs to be considered when estimating the I-beam dimensions. The I-beams should be completely straight, never even slightly twisted or bent and must be positioned parallel to each other.

OPTION 1 : Brick support beam positioned for unloading 6 layers of bricks

Advantages

- Higher unloading capacity, also during emergency situations
- Reduced workload for personnel during regular operation since less unloading procedures are performed for the same number of bricks being unloaded
- Friendly working environment due to less heat exposure
- Increased cooling down rate possibility

Disadvantages & Limits

• The dimensions of the unloading screw/hydraulic piston increases due to the increased lift height

BRICK SUPPORT I-BEAMS

OPTION 2 : Brick support I-beam positioned for unloading 4 layers of bricks (including a lower arch and reduced overall kiln height)

Advantages

- Due to the decreased lift height the dimensions of the unloading screw/hydraulic piston decreases
- Decreases overall construction costs due to the reduced kiln height
- Unloading difficulties during emergency situations; hence an experienced & disciplined working crew is required
- Increased workload for personnel during regular operation since more unloading procedures are performed for the same number of bricks being unloaded
- Increased heat exposure to working personnel

GIRDER SYSTEM

Function

After the trolley is securely positioned beneath the fired bricks, the Girder system facilitates the release of the unloading bars and hence the load of the entire brick setting is transferred to the trolley and the unloading system.

Design principles

The girder system needs to be designed in a way that it is able to carry the entire brick load. Further, it has be ensured that the release mechanism cannot be triggered accidently (or unintentionally) and the brick load can be transferred onto the trolley without potentially injuring working personnel when releasing the system.

When a hydraulic unloading system is in place the whole girder system is not required.

OPTION 1 : Girder system with side locks

Advantages

- No electricity required
- Less uplift movement of screw/hydraulic piston and therefore easier for working personnel

- Girder rail prone to bending due to heat radiation and constant load
- Increases construction time due to fixing of all the related metal parts

06 GIRDER SYSTEM

Advantages	Disadvantages & Limits	
 Cost effective No electricity required Less uplift movement of screw/hydraulic piston and therefore easier for working personnel 	• None	
personnel		

ARCH/SLAB

Function

The arch/slab structure ensures safe access to unload the fired bricks. It also distributes the loads of above build structural and non-structural loads into its supporting walls. Further, air entering through this access opening is aiding both the combustion and the brick cooling process.

Design principles

Different Arch types can be designed.

Concrete beams and arches; in situ or prefabricated; are viable alternatives to brick arches. A few of them are shown as options in this document.

Being arch, beam or slab, the fundamental design criteria is that the structure is safely bearing the load placed on top of it. Concrete based structures should not be exposed to temperatures above 300°C.

OPTION 1 : Arch constructed with brick

Advantages

• Locally available bricks can be used, therefore reduced construction costs

- Requires an arch mould
- Arch construction will increase the overall kiln construction time

OPTION 2 : In situ R.C.C. beam and slab

ARCH/SLAB

Advantages

07

- Saves on overall number of fired bricks for the kiln construction
- No arch construction skill required

Disadvantages & Limits

- Requires shuttering material
- Will increase the overall kiln construction time
- Will likely get some damage in case of high temperature exposure (e.g. brick melting inside the shaft)

FUTURE OPTION 1 : Precast R.C.C. beams with 1 layer of front bricks attached as insulation and protection

Advantages

 Reduces overall kiln construction time in case the pre-fabrication is done in factories

- Requires a mechanical lifting device to place it
- For achieving economical advantages a large number of shafts need to be constructed

ARCH/SLAB

FUTURE OPTION 2 : Precast R.C.C. arch with 1 layer of front bricks attached

Advantages

07

- Reduces overall kiln construction time in case the pre-fabrication is done in factories
- Requires a mechanical lifting device to place it
 For achieving economical
- advantages a large number of shafts need to be constructed

SHAFT

Function

80

The shaft is the core element of the kiln and has to accommodate the firing of the bricks as per the appropriate fire schedule as well as to provide resistance to mechanical wear and tear from vertical movement of the loaded bricks.

Design principles

The shaft dimension must be designed according to the dry green brick size and maximum production capacity.

Further, the following design criteria should be considered to allow for trouble-free brick firing:

- Heat resistance of the shaft walling material in the central firing zone up to 1200°C
- Acidic emission resistance in the pre-heating zone
- Structural expansion properties
- Perfect verticality
- Self supporting structure

OPTION 1 : English bond refractory masonry without expansion joints

Advantages

- Uniform expansion and contraction properties
- Uniform thermal mass properties

- Special masonry skills required
- Expansion will develop uncontrolled masonry cracks

08 SHAFT

OPTION 2 : English bond refractory masonry; substituted with fired bricks in sections with temperatures below 500°C (pre-heating and cooling zone)

Advantages

< 500°C

> 500°C

< 500°C

 Most economical option under the condition that the firing zone is always maintained at the centre of the shaft

Disadvantages & Limits

- Chances of shaft damages if the fire position is not properly maintained at the centre of the shaft
- Fire position adjustment is limited to refractory masonry area
- Potential damages to fired brick masonry in the preheating zone due to acidic emissions

FUTURE OPTION 1 : English bond refractory brick masonry with expansion joints

Advantages

- Uniform expansion and contraction properties
- Uniform thermal mass properties
- Controlled expansion will avoid uncontrolled masonry cracks, hence lower maintenance

- Special masonry skills are required and the construction system is time consuming, therefore costly
- Requires special brick blocks or cuttings
- Special corner support essential to ensure expansion at defined joints

SHAFT

FUTURE OPTION 2 : Prefabricated fire resistance refractory concrete elements

Note : This possible future option requires professional overall kiln construction planning and practical detail designs.

Advantages

80

- Reduced shaft construction time
- The shape of the element can be both vertical or horizontal

- Requires a mechanical lifting device to place it
- Skill to maintain the total verticality of the shaft is required
- Fire resistant refractory concrete is considered expensive
- Will develop uncontrolled cracks if no expansion joints are provided

CAVITY BETWEEN SHAFT AND SHAFT SUPPORT STRUCTURE

Function

The cavity is required to ensure structurally independent expansion and contraction of the shaft structure.

Design principles

The main principle for designing this cavitiy is to ensure the structural integrity of the shaft.

The top and bottom of this cavity should be closed with a flexible material after the kiln is fully dried out in order to avoid heat loss.

OPTION 1 : Unfilled cavity (2-3 cm approx.)

Advantages

 Basically no expenses (However to ensure an equal cavity size it is of advantage to place a low cost thermocol board. This thermocol board will melt as soon as the kiln is in operation and a uniform cavity will remain)

- Some heat loss due to air movement, hence reduced insulation value
- Risk of mortar and other material filling up the cavity if not carefully protected during construction
- Increased heat exposure at the shaft top area

CAVITY BETWEEN SHAFT AND SHAFT SUPPORT STRUCTURE

OPTION 2 : Filled cavitiy (Calcium silicate board)		FUTURE OPTION 1 : Filled cavity (Stone wool or glass wool insulation blanket/board)	
Advantages	Disadvantages & Limits	Advantages	Disadvantages & Limits
 Easy to install since they are available as self supporting boards 	 Damage potential if exposed to contact with water Could be a costly option depending on selected material quality 	Cost benefit factor is good	 Risk of sagging when fixing insulation blankets to a vertical surface

SHAFT SUPPORT WALL

Function

The shaft-support wall ensures the independent working (expansion/contraction) of the shaft, reduces lateral pressure and acts as an insulation layer. The chimneys are usually constructed on top of the shaft supporting wall.

Design principles

There are many shaft support wall construction systems possible, all depending on economical insulating building materials.

Note : Using a 'K-value' calculator for selecting the size of the most economical insulation material/ structure is recommended.

Note : If a shaft is constructed with expansion joints, the shaft corners must be supported to ensure correct expansion direction. (see 8, future option 1)

OPTION 1 : English bond brick masonry in mud mortar

Advantages

- Low construction cost
- Provides reasonable stability for chimney system
- Chances of wall sagging due to mud mortar shrinkage

SHAFT SUPPORT WALL

FUTURE OPTION 1 : Vermiculite concrete

Note : Vermiculite can also be used as insulation material between both structures; the shaft and the supporting wall.

Note : It is necessary to consult professionals who are experienced in practical application of vermiculite concrete technology for a kiln construction.

Advantages

10

Disadvantages & Limits

- Low thermal conductivity material, hence good insulation
- Can be precast or constructed in-situ
- Does not require any further insulation or structure, except a protection layer, e.g steel
- The kiln size can be reduced, hence material and labour cost can be reduced

reduced load bearing capacity

Advantages

• Potential of slim kiln structure and cost reduction.

- Insulation bricks are expensive
- Insulation bricks have reduced load bearing capacity

KILN INSULATION BOXES

Function

Kiln insulation boxes are constructed to distribute the load of insulation material used to minimize energy losses. They also provide rigidity to the kiln structure and define the size of the working platform.

Design principles

The box dimensions must be related to the insulation material value to be used and the required working space and type of platform. The top of the insulation boxes (platform) should ideally be covered to avoid heat loss.

Note : Filling material should be as dry as possible.

OPTION 1 : Filled with ungraded soil

Advantages

• Cheapest and easily available filling material

- Low insulation value, the heat loss is relatively high
- Difficult to avoid water penetration during construction
- Chances of shaft bulging increases with the frequency of shutdowns due to repeated compacting of fine particles

KILN INSULATION BOXES

OPTION 2 : Filled with graded brick gravel

Advantages

11

- In relation to the insulation value it is a good and economical filling material
- Enhanced insulation properties due to creation of micro-pores
- Decreased risk of shaft bulging
- Difficult to maintain proper material grading during filling process
- Difficult to avoid water penetration during construction

PEEP-HOLE PIPES

Function

Peep-hole pipes are narrow openings in the kiln structure which allow a visual and/or mechanical fire temperature monitoring.

Design principles

Peep-holes must be designed to allow visual monitoring of the fire position and/or insert fire monitoring equipment (thermocouples) from the outside of the kiln structure.

Further, they should be positioned in a way that they do not bend under the weight of the insulation filling.

The exactness of the fire schedule plotting increases with the number of built-in peep-hole pipes.

The respective batch height and the soil shrinkage defines the position and distance of the peephole pipes.

OPTION 1 : M.S. pipes

Advantages

 A straight-forward, practical and economical system for fire position/temperature monitoring

Disadvantages & Limits

 Potential of excess air entering the shaft if the pipes are not properly sealed during operation

OUTER KILN WALL STRUCTURE

Function

The outer kiln wall structure encases the insulation filling around the shaft supporting walls and ensures structural rigidity and protection against the elements.

Design principles

The outer kiln wall structure must be designed so that it can protect the insulation and the shaft structure against mechanical impact.

Note : Sufficient weep holes must be provided to avoid kiln structure damages due to water evaporation during the initial firing. These weep hole should be closed only after the kiln is completely dried out.

OUTER KILN WALL STRUCTURE

OPTION 2 : Concrete frame structure with in-filled brick masonry

Advantages

- Slim kiln structure possible since no buttresses are required
- Overall construction time reduction possible

Disadvantages & Limits

- Scaffolding and formwork increase the construction costs
- Additional cost for reinforcement steel and concrete
- Relatively unfavourable construction carbon foot print due to concrete and steel requirements

OPTION 3 : Metal

Advantages

- Can be prefabricated, hence reduces construction time
- Slimmest structure possible
- Mass pre-fabrication potential

- Metal corrosion is likely the main problem, hence high expenses for maintenance work
- Separate platform for brick storage required
- Requires a mechanical lifting device to construct it
- High-value insulation required, hence expensive
- Relatively unfavourable construction carbon foot print due to steel requirements

OUTER KILN WALL STRUCTURE

FUTURE OPTION 1 : Load bearing brick masonry without buttresses

Advantages **Disadvantages & Limits** • Potential of slim kiln structure. • Separate platform structure • No bulky insulation boxes required for movement and required storage • High-value insulation material required, hence is considered expensive

WORKING PLATFORM

Function

The working platform is constructed for free movement of personnel and for storage space.

Design principles

The working platform design is based on both load bearing (buttress) structure or frame structure options.

However, the working platform must be open, ventilated and provide enough space so that working personnel can move along and load green bricks into the shaft without hindrance by any structure or equipment.

Note : In case of a slim VSBK structure, e.g. metal, a separate platform structure is required.

OPTION 1 : Partial R.C.C. working platform on buttress

Advantages

- Requires less reinforcement steel due to support by masonry buttresses
- Box insulation filling material can be topped up

- Increased dust exposure potential
- Time consuming because of shuttering work, concrete curing time and de-shuttering work

WORKING PLATFORM

FLUE-DUCTS

Function

The flue-ducts are the lower section of the shaft emission exhaust system which systematically channels the flue gases into the chimneys.

Design principles

The flue ducts must be designed to function in a way that all flue gasses are passing through the exhaust gas system (natural and forced draught system) without posing health hazards to working personnel. Further it must be ensured that the least amount of excess air can enter the system at the top of the upper flue ducts during unloading.

The flue duct system should be constructed with acid-resistant materials since acidic gases are released during the firing process.

OPTION 1 : Lower and upper flue-duct system constructed with refractory/fired bricks

Advantages

- Simple cleaning system possible
- Best suited for natural draught system
- Cost savings potential if constructed with fired bricks

- The flue duct system is the weakest part of the shaft, hence periodical maintenance is required
- Time consuming brick cutting work during construction

15 FLUE-DUCTS

FUTURE OPTION 1 : Lower and upper flue-duct system constructed with refractory castables

Advantages

- Disadvantages & Limits
- Reduced construction timeBest suited for forced draught system
- Calibration of individual flue openings possible
- Economic viability increases with numbers
- Limited to countries with fire resistant concrete casting experience

SHAFT TOP STRUCTURE

Function

The shaft top protects the flue duct system from mechanical and live load impacts. Further it provides a base for the lid cover and usually also for natural draught chimneys.

Design principles

The shaft top structure should not disturb a vertical expansion of the refractory shaft.

It should be designed in such a way that additional features like flue duct guides, lid-cover base and chimneys can be securely fixed.

The expansion gap must be sealed with flexible material to avoid heat loss after the kiln is fully dried out.

OPTION 1 : R.C.C. shaft top anchored on the s	haft
supporting wall	

Advantages		
 Allows vertical expansion 		
movement of the refractory		
shaft		

Disadvantages & Limits

• None

• Reduced shaft bulging probability

EMISSION EXHAUST SYSTEM

Function

The Emission exhaust system is to provide the draft for proper fire positioning as well as to discharge exhaust gases at a safe height.

Design principles

The emission exhaust system must be designed by respective experts.

	Γ	
Advantages	Disadvantages & Limits	
 No electricity required, hence an economical option Can be constructed with material other than metal, i.e. fired bricks 	 Draught can vary with weather conditions Difficult to erect and tie up the chimneys, especially in high wind prone areas High wear and tear of metal parts due to corrosion from acidic emissions 	

ADDOD BOD

 \wedge

B B

EMISSION EXHAUST SYSTEM

OPTION 2 : Forced draught with flue ducts		FUTURE OPTION 1 : Natura Note : This system is preferred for	al draught without flue ducts r multiple shafts.
 Advantages Uniform draught, hence better fire position control One chimney can be used for 	 Disadvantages & Limits Requires electricity, including a back-up system Exhaust gas temperatures 	Advantages Elongated firing curve Uniform draught User friendly draught control 	 Disadvantages & Limits Anti corrosive material required for the hood Potential of increased hood
multiple shaftsBrick quality is likely to be more uniform	must be maintained to avoid corrosion of metal partsIncreased maintenance costs	 One Shaft - one chimney During loading, emissions can be extracted separately 	system maintenance

• Inbuilt shaft lid, hence reduced health hazard

- Anti corrosive material required for the hood
- Potential of increased hood system maintenance

FLUE GAS DAMPERS/VALVES

Function

Flue gas dampers/valves regulate the air flow within the system, therefore steering the appropriate fire schedule and ensuring a clean working environment while loading the bricks.

Design principles

The upper and lower flue duct system requires two independent valves/dampers each, hence 4 valves/dampers are required per shaft.

Valves and dampers should be designed so that least amount of flue-gasses can pass when they are completely shut.

Damper slots must be constructed so that no excess air can enter into the emission exhaust system.

FLUE GAS DAMPERS/VALVES

DESIGN FUNCTIONALLY BUILD ECONOMICALLY!

SHAFT LID

Function

19

The shaft lid supports the efficiency of the counter current air flow principle (energy efficiency) and ensures a clean working and general environment on a VSBK.

Design principles

Shaft lid should be designed user-friendly as well as light weight, fire and preferably corrosion resistant materials.

OPTION 1 : M.S. sheet lid/elements	
Advantages Is an economical option 	Disadvantages & LimitsHigh corrosion potential

19 SHAFT LID

OPTION 2 : Stainless steel sheet		
Advantages	Disadvantages & Limits	
Lower corrosion potential	Expensive option	

UNLOADING BARS

Function

The unloading bars support the brick setting inside the shaft during regular operation and transfer the brick setting load to the brick support I-beams.

Design principles

An unloading bar should be designed light weight, small in cross section and must be able to resist high heat stresses under constant load of approx. 4 tons.

Note : Unloading bars are to be considered operation wear-and-tear material.

OPTION 1 : M.S. square bars		
Advantages Lighter than M.S. I-bars 	Disadvantages & LimitsHigh chance of brick breakages due to reduced flange width	

UNLOADING BARS

OPTION 2 : M.S. I-bars		OPTION 3 : Reinforced M.S. square bars	
Advantages	Disadvantages & Limits	Advantages	Disadvantages & Limits
 Stronger than M.S. square bars Less chance of brick breakages due to bigger flange width 	 Heavier than M.S. square bars and therefore rarely used for larger shaft dimension 	Can be used for larger shaft dimension	 High chance of brick breakages due to reduced flange width

UNLOADING TROLLEY

Function

The unloading trolley is used to unload the fired bricks and to transport them to the unloading stations.

Design principles

The unloading trolley should be designed in such a way that it can bear the brick setting load without warping or bending.

It must be as light as possible but strong enough to handle emergency situations .

Advantages	Disadvantages & Limits	
 Locally available and economical fabrication Light weight trolleys can be designed when using a hydraulic unloading mechanism 	 Trolley weight increases with larger shaft size 	

BRICK UNLOADING SYSTEM

Function

The brick unloading system raises and lowers the trolley and the brick settings inside the shaft.

Design principles

The unloading mechanism must be capable of bearing the entire brick setting load inside the shaft and to lift it to the point where the support bars can be retracted during the unloading of the bricks without the threat of sudden failure.

Both screw jack and hydraulic unloading system are in general designed to carry and lift up to 30 tons of weight (bricks and trolley).

OPTION 1 : Screw jack mechanism

Note : Screw must be fabricated with high carbon steel.

Advantages

- No electricity required
- An electro motor can be (retro) fitted to mechanically operate the screw jack mechanism

- Complex and time consuming fabrication process
- Maintenance of nut is high as it is made of cast-iron
- Accident prone system and hard work for personnel

BRICK UNLOADING SYSTEM

OPTION 2 : Hydraulic mechanism

Advantages

- Easy to handle, working personnel are not exposed to hard work and falling coal
- No girder system required, hence construction time and cost saving
- Fewer workers required
- Manual power pack can be applied in case of power failure
- Trolley track can be narrowed and therefore trolley movement is easier

- Requires electricity, including a back-up system
- Expensive lubricants required
- Requires special dust
 protection

ACCESS TO THE WORKING PLATFORM

Function

Is the means to transport green bricks and coal up to the working platform level for an uninterrupted firing process.

Design principles

The main design parameter is to transport dry green bricks from the ground level to the working platform level in the most economical way, ensuring that the green brick quality is not compromised.

OPTION 1 : Ramp/staircase

Advantages

- Possibly the most economical construction option
- Requires no electricity
- Depending on gradient angle, mechanical equipment can be used to carry bricks

- Drudgery work for employed personnel
- High green brick handling
 damage potential

ACCESS TO THE WORKING PLATFORM

OPTION 3 : Lift OPTION 2 : Conveyor belt Disadvantages & Limits Disadvantages & Limits Advantages Advantages • Reduces drudgery • High dry green brick handling • Reduced drudgery • Requires power (electricity or • Less workforce required damage potential • Less workforce required fuel generator) to operate when compared to manual • High wear and tear, hence high when compared to manual transportation system maintenance and repair cost transportation system • Very efficient and swift potential • Low green brick damage • Requires power (electricity or transportation system potential fuel generator) to operate • Potential of falling green bricks increases the risk of injury

ACCESS TO THE WORKING PLATFORM

OPTION 4 : Gantry Advantages **Disadvantages & Limits** • Reduced drudgery • High initial investment • Less workforce required • Only economical for large compared to any other system numbers of shafts • Low green brick damage • Requires power (electricity or fuel generator) to operate potential • Mechanized loading of green • Requires considerable platform bricks into gantry cage possible space 00

23

24 ROOF

Function

The roof protects the kiln structure and working personnel from the elements such as rain, sun and wind.

Design principles

Roof should be designed as economically as possible while at the same time ensuring that the kiln remains dry, green bricks and working personnel are protected.

A roof monitor is essential to ensure proper ventilation that reduces the accumulation of harmful emissions. The height of the roof should be enough for the fire master to work efficiently above the shaft top for loading bricks.

OPTION 1 : High-end level

(Corrugated/plain plastic roofing sheets or P.V.C. corrugated/plain sheets on sloped M.S. pipe trusses and purlins) (Sloped concrete or ferro-cement roof)

Advantages

- Is resistant to damaging emissions
- Is an expensive roof

24 ROOF

OPTION 2 : Normal range level

(Colour coated roof sheets/corrugated/plain, galvanized iron sheets on sloped M.S. pipe trusses and purlins)

Advantages

Disadvantages & Limits

- Is an economical solution
- Requires frequent
 maintenance due to corrosion
 problems

OPTION 3 : Budget level

(Biodegradable materials: Bamboo mats or clay roofing tiles on timber or bamboo trusses and purlins)

Advantages

• Is a low cost and functional roofing option

- Requires regular replacement/ repair due to relative short lifespan of material
- Potential of rain leaking exists

Note

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC

