Ester Transformer Fluids IEEE/PES Transformers Committee Meeting October 7, 2003

> C. Patrick McShane, Cooper T.V. Oommen, ABB Charles Tanger, Cargill

Meeting Mission: General Education Purpose Only

Overview

What are Ester Based Dielectric Coolants?
How do they compare to Mineral Oils?
What are the Key Benefits?
Where, in What, are EBDCs Applied
How have they Performed in the Field?

Ester Transformer Fluids

Natural Ester Sourcing & Processing

Charles Tanger Cargill, Inc.

Natural Esters (Vegetable Oils)

Sources

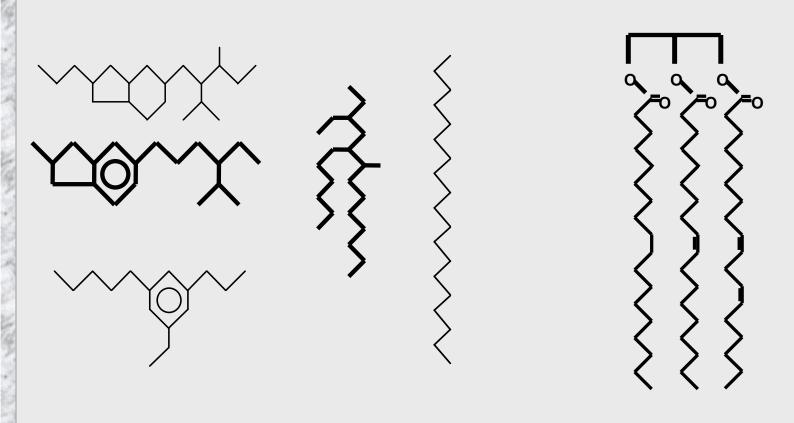
- Chemistry Comparison to Mineral OilRefining
- Key Properties Comparison to Mineral Oil

Natural & Synthetic Esters

Synthetic Polyol Esters have been used as a PCB substitute in specialty transformer applications since the early Eighties in the USA. They are formed by processing fatty acids and alcohols.

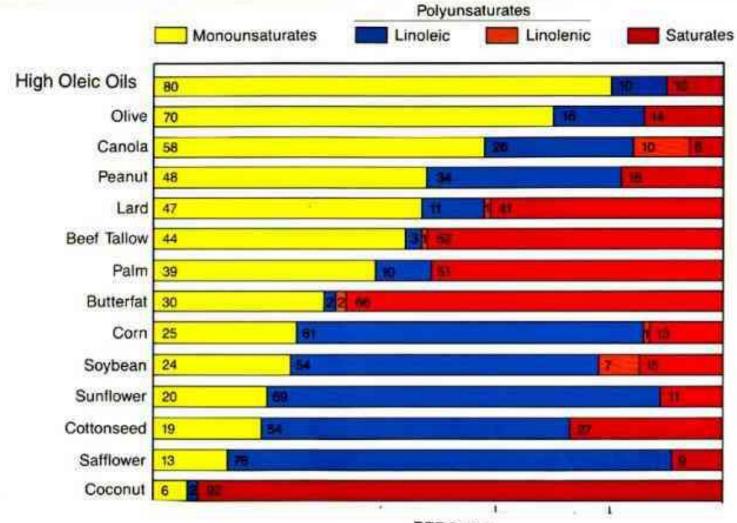
Natural Esters are produced from seeds.

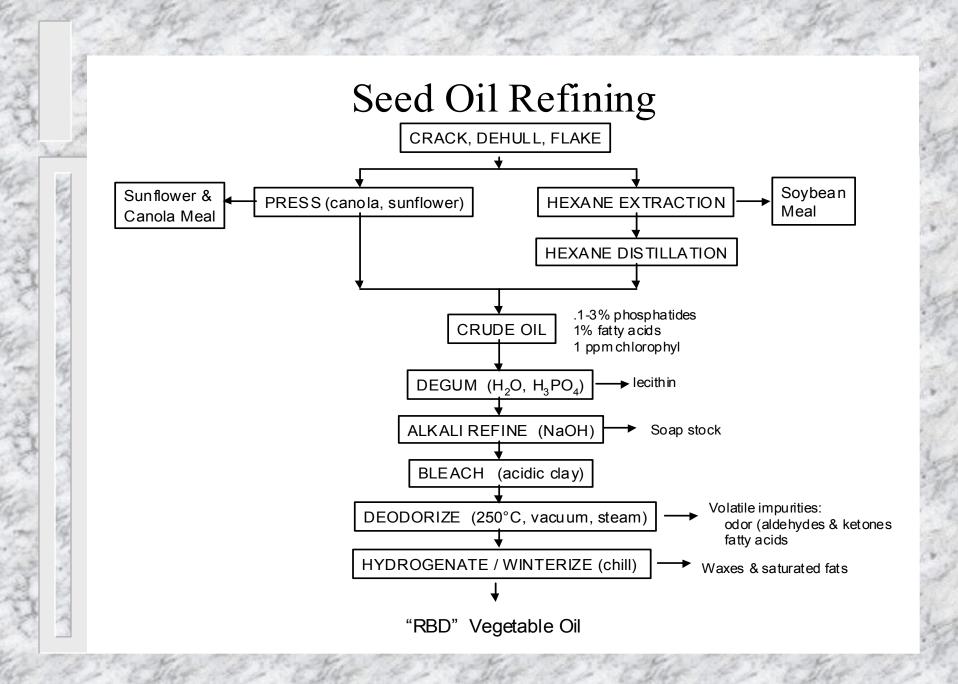
Vegetable Oils are Natural Esters



Vegetable Oil vs. Mineral Oil

Advantages	Limitations
 Renewable Resource Much Higher Flash & Fire Points Environmentally Friendlier Several Performance Improvements 	 Inferior oxidative stability Poorer low temperature properties Higher Viscosity Higher Cost to Produce


Vegetable Oil vs. Mineral Oil

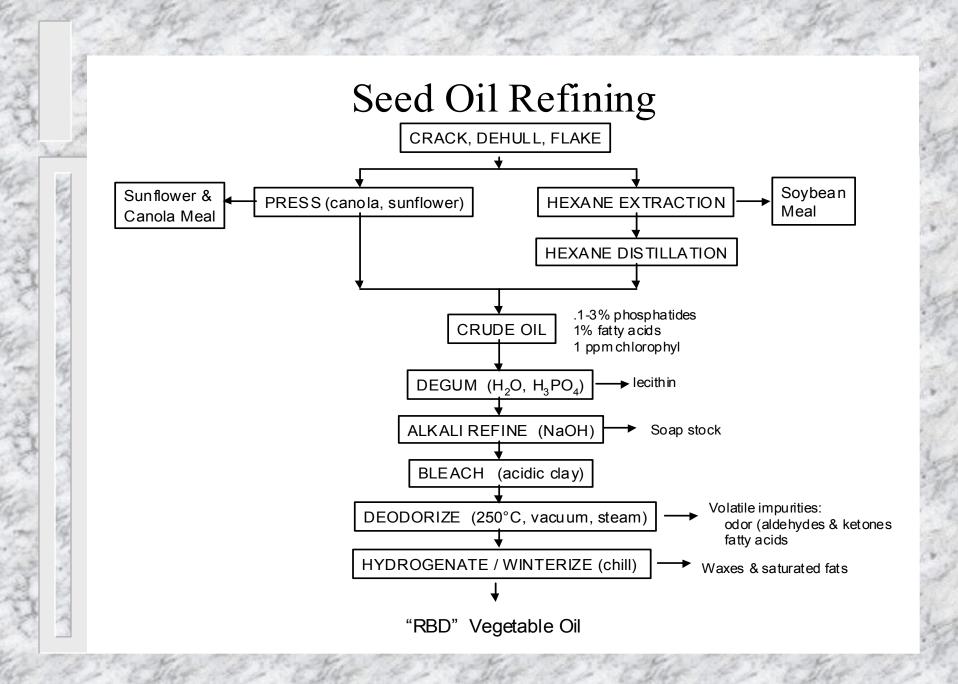

Naphthenic Mineral Oil

Vegetable Oil

COMPARISON OF VEGETABLE OILS

PERCENT

Beans to Crude Vegetable Oil



Soybeans

Cracked Soybeans

Crude Soybean Oil

RBD Oil (Refined, Bleached, Deodorized)

RBD SBO

Vegetable Oil Refining

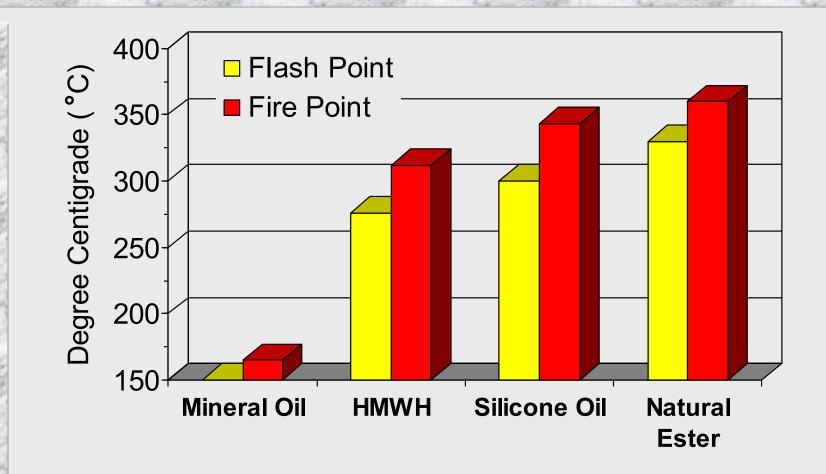
Start with beans or seeds.
End with purified oils.
Purified oils are the starting point for transformer oils

Ester Transformer Fluids Key Properties & Standards

T.V. Oommen, Consultant ABB, Inc.

Natural Esters for Transformers

- RBD edible vegetable oils used for base.
- Further processing e.g. Removal of polar contaminates. Addition of performance enhancing additives
- Dielectric fluids from natural esters, remain highly biodegradable, with high flash and fire points, and can test non-toxic to sensitive species.


Use of Natural Esters in Electrical Equipment

- •New and Retrofill Application in the Field:
 - Distribution Transformers: Single and Three Phase Pole and Pad-mounted, Small Power.
 - Medium power Transformers
 - Mobile Substation Transformers
 - Voltage Regulators
 - Switchgear
 - Transformer- Rectifier Sets

Transformer Oils – Physical Properties

PROPERTY	STD. MIN OIL	<u>HI FIRE PT</u>	BIOBASED
PROPERTY	D 3487	D 5222	D 6871
Color, max.	0.5	2.5	1.0
Visual Examination	B&C	B&C	B&C
Flash Point, °C, min.	145	275	275
Fire Point, °C, min.		300	300
Interfacial Tension, 25°C, dynes/cm, min.	40	40	
Pour point, °C, max.	-40	-21	-10
Spec. Grav., 15°C, max.	0.91	0.91	0.96
Viscosity, max. cSt: 100°C	3.0	14	15
40°C	12	130	50
0°C	76	2500	500

Relative Flash and Fire Points

Transformer Oils – Electrical Properties

PROPERTY	STD. MIN OIL	<u>HI FIRE PT</u>	BIOBASED
FROFERIT	D 3487	D 5222	D 6871
Dielectric breakdown, KV min			
Disk electrodes, min.	30	30	30
VDE elect., 0.04" gap, min.	20		20
VDE elect., 0.08" gap, min.	35		35
Impulse,1" gap, 25°C, min.	145		130
Gas. tend., µL/min, max.	30	30	0
Diss. Fact. % max, 25° C	0.05	0.05	0.2
100°C	0.30	0.30	4.0

Transformer Oil – Chemical Properties

PROPERTY	STD. MIN OIL	<u>HI FIRE PT</u>	BIOBASED	
PROPERTY	D 3487	D 5222	D 6871	
Oxidative Stability:				
72 hrs - % sludge, max.	0.15 / 0.1	0.15	not estab.	
Acid number, max.	0.5 / 0.3	0.30	not estab.	
164 hrs - % sludge, max.	0.3 / 0.2	0.3	not estab.	
Acid number, max.	0.6 / 0.4	0.60	not estab.	
RBOT minutes, min.	- / 195	195	not estab.	
Corrosive Sulfur	pass	pass	pass	
Water, ppm, max.	35	35	200	
Acid number	0.03	0.03	0.06	
PCB Content	not detectable	not detectable	not detectable	

Test & Verification Data Available

- Physical, chemical and electrical characteristics
- Heat transfer properties
- Water solubility data
- Decomposition under thermal and electrical stress
- Functional life test data
- Long term aging data
- Field performance in commercial units
- Environmental performance data
- Retrofilling units having other fluid types

Test & Verification Data Available

References:

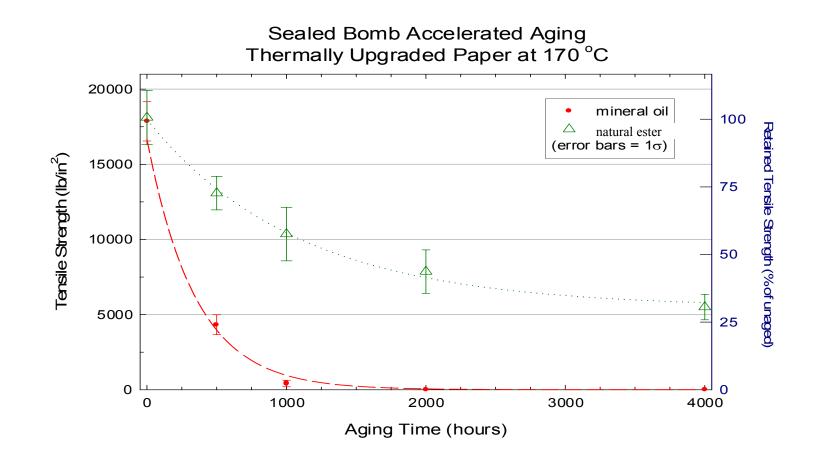
- •IEEE, CIGRE, ACS, CIRED Publications and Proceedings
- •ASTM D6871-03 Standard
- •Manufacturers/Suppliers Literature
- •Published Testing Laboratories Reports
 - (e.g. Doble Engineering, EPRI, US EPA ETV, UL, FM)

Ester Transformer Fluids

Performance & Applications

C. Patrick McShane Cooper Power Systems

Performance Improvements vs. MO


Insulating Paper Aging Rate Reduced
Essentially no Sludge Precipitate
Reduction of Paper Moisture Levels
Much Lower Gassing Tendency Value
Reduced Coking on Bare Copper
Potential Self Sealing "weeping" leaks

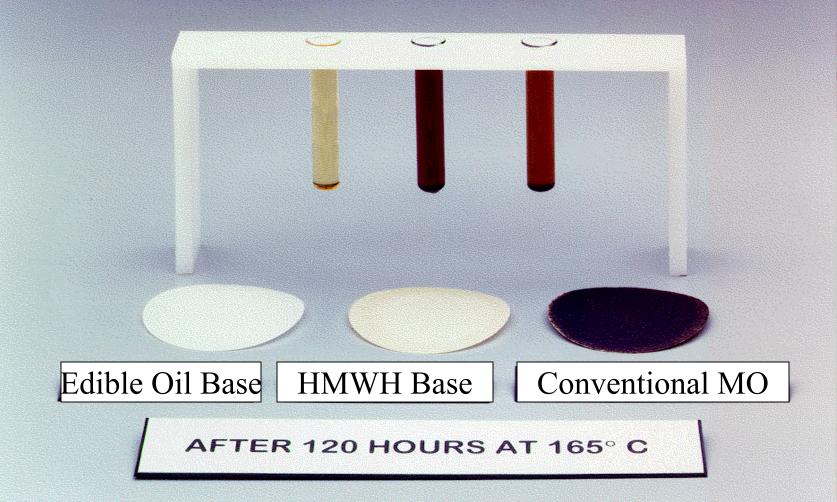
Insulation Paper Aging Rate Reduced

Accelerated Paper Life Testing using the Sealed Tube Method, comparing aging in natural ester fluid versus mineral oil to reach a defined life end point:

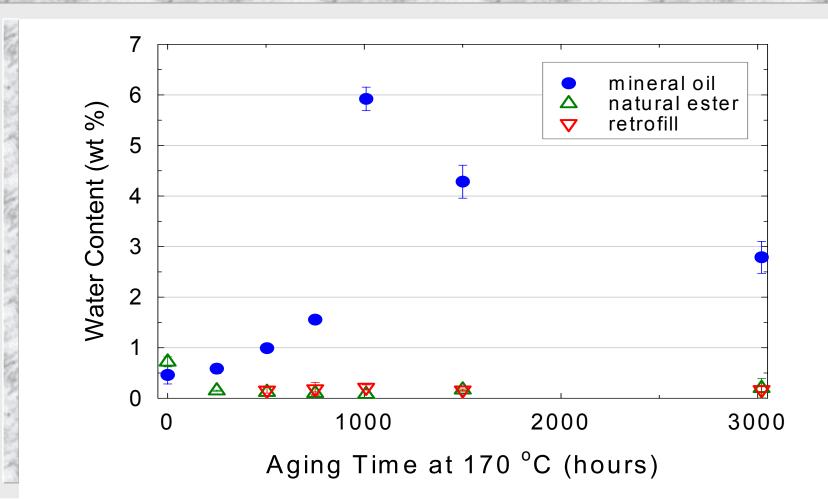
- Thermal Upgraded Kraft: Up to 8 times longer.
- Non-Upgraded Kraft: > 10 times longer.

Comparison of Tensile Strength vs. Time

Visual Comparison vs. Aging Time


WALLEY AN WALL VIEW TO MANY TO LA VIEW								
112	Natural Ester	Mineral Oil	Natural Ester	Mineral Oil	Natural Ester	Mineral Oil	Natural Ester	Mineral Oil
NOVY OF		st - ML 152-2000 r 500 hr @ 170°C		st - ML 152-2000 r 1000 hr @ 170°C	Sealed Tube Test Upgraded Paper 2		Sealed Tube Test Upgraded Paper 4	- ML 152-2000 4000 hr @ 170°C

Essentially no Sludge Precipitates


 Mineral oils, when oxidized tend to form and precipitate sludge, potentially reducing dielectric and thermal performance.

 Natural ester oils, when oxidized, tend to polymerize but not form sludge precipitates.

Hot Oil, Open Beaker Aging Test

Reduction in Paper Moisture

Lower Gassing Rate

ASTM D2300 Gassing Tendency:

- Mineral Oil typically around -5µL/min.
- Natural Esters between -50 to 80 μ L/min.

Doble Partial Discharge -TCG:

- Mineral Oil ----- $\approx 1,500 \text{ ppm}$
- Natural Esters ----- \approx 1,100 to 1,300 ppm

Reduced Coking Tendency

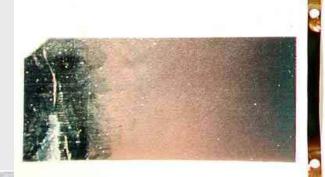
Immersed Hot Copper Surface Test:

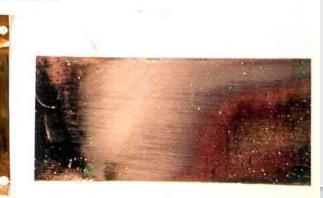
- With air head space, natural ester produced
 1/40 coking relative to mineral oil.
- With nitrogen head space, natural ester produced non-detectable coking.

Relative Coking on Hot Copper Mineral Oil Produced Up to 40 Times by Weight

Coking Tendency Summary

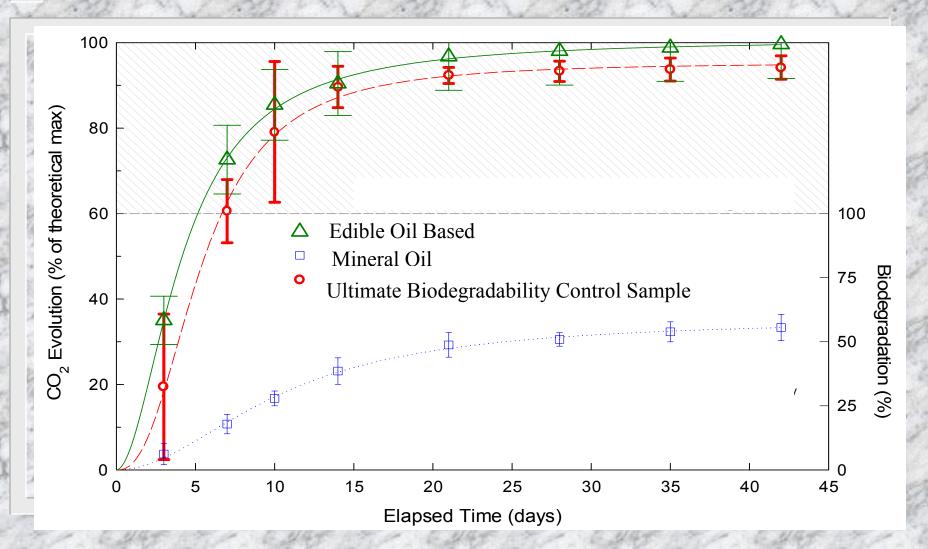
MINERAL OIL


FR3


AIR #19 UNPROCESSED OIL

N2 #18 DRY/DEGAS

#16 USED FR3


#17 DRY/DEGAS

Aerobic Aquatic Biodegradation

Test Method: EPA OPPTS 835.3100

Initial Commercial Uses of Natural Esters

•Distribution and small power units: •New Units 1999 •Retrofill 1999

Medium Power Transformers:
 •Retrofill 2001
 •New Units 2003

•TR Sets •Retrofill 1999:

•Switchgear •New Units 2002:

Field Performance

Average Values of Nine 3 Phase Pad-Mounted Transformers 77th Month Samples

	New	Ave.	Std. Dev.
Moisture ppm	15	33	14
Dielectric Strength	62	70	10
Fire Point	359	359	2
Viscosity	32.7	32.4	0.3
Dissipation Factor	0.12	.15	.03

Thank You ! - Questions?

