Low Tech Magazine on Compressed Air Storage

From Open Source Ecology
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Article

  • Low Tech Magazine article - [1]

Notes

  • 40-50% efficiency of air storage, compared to 70-90% for batteries.
  • Pumping and air engines are 60-70% efficient.
  • Scroll Compressor is nearly 100% efficient, but expensive.
  • Highest ESOI of any energy source - [2]
  • Conclusion of Reference [7] - The sizing of storage tanks for a SHS-CAES has been determine by modeling all the components downstream of the storage tank. To operate the system with SHS load of 29.65W for 12 hours requires a tank size of 18 m3, with an initial pressure of 8 bar and regulator setting 3.511 bar.
    • Does this calculation reconcile with the 65 cubic meter figure below? Here we have 0.4 kWhr with 18m3 - so with ~3x that volume we have about 1.4 kWhr - so about 2x worse than the experimental extrapolation of the 65 cubic meter volume (see experimental below).
  • 8 bar system operates at around 60% roundtrip efficiency - that is impressive.
  • P. 60 of thesis [3] shows the size of tank required for 3kWhr storage - 65 cubic meter. This is based on 5% overall efficiency - abysmally low, but real for off-the-shelf compressor and air tool.
  • P. 54 of reference [8] [4] shows only 5% efficiency of overall system was obtained, calculating the total wattage of output to the total wattage of input. This is about 10x less than a claimed 50% efficiency of air storage. What gives?
  • P. 60 of Ref [8] states that tank cost would be $25k and overall $30k.
  • Summary: efficiency of small scale prototype was 5% using an off-shelf tool motor (3Whr of usable power extracted from a 65l tank at 8 bar). This translated to a 3kW system being 65k liters. However, this is no-where near the predicted 50% roundtrip efficiency? Thus, indicates that the 65k liter figure is off by a factor of 10 for real, easily achievable results? Why was the efficiency so particularly low here?

Marcin Comment

The article seems a bit faulty.

It appearst that your analysis of the 65 cubic meter tank is faulty. You are implying that the efficiency there is decent (such as the 40-50% promised for 8-bar systems). Wading through Reference [8] - a master's thesis produced only 5% overall efficiency - so the 65 cubic meter figure is based on the 5% overall efficiency. You mention that the 200 bar system was 11-17% efficient. Can you reconcile this? It appears that the truth is - the low pressure systems that utilize off-the-shelf components are extremely inefficient.

Links