5-Hydroxymethylfurfural: Difference between revisions

From Open Source Ecology
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 1: Line 1:
'''HMF''' is an organic compound derived from plant-based sugars (i.e. glucose & fructose). As a platform chemical, it can be processed into various biochemicals that are currently still derived from fossil fuels. HMF is highly water soluble and can be processed into a diesel-like liquid biofuel that is in some ways superior to ethanol.  
'''HMF''' is an organic compound derived from plant-based sugars (i.e. glucose & fructose). As a platform chemical, it can be processed into various biochemicals that are currently still derived from fossil fuels. HMF is highly water soluble and can be processed into diesel-like liquid biofuels ("furanic biofuels"). These are in some ways superior to ethanol. For example, compared to ethanol, 2,5-dimethylfuran has a higher energy density, has a higher boiling point (by 20 °C), and is not soluble in water.  
 
Here is a study from the Institute of Chemistry at the University of Rostock, Germany: '''[http://www.chemie1.uni-rostock.de/pci/emelyanenko/publications/41.pdf Hydroxymethylfurfural (HMF) Biomass-Derived Platform Chemicals: Thermodynamic Studies on the Conversion of 5-Hydroxymethylfurfural into Bulk Intermediates]'''
Here is a study from the Institute of Chemistry at the University of Rostock, Germany: '''[http://www.chemie1.uni-rostock.de/pci/emelyanenko/publications/41.pdf Hydroxymethylfurfural (HMF) Biomass-Derived Platform Chemicals: Thermodynamic Studies on the Conversion of 5-Hydroxymethylfurfural into Bulk Intermediates]'''



Revision as of 23:30, 20 January 2011

HMF is an organic compound derived from plant-based sugars (i.e. glucose & fructose). As a platform chemical, it can be processed into various biochemicals that are currently still derived from fossil fuels. HMF is highly water soluble and can be processed into diesel-like liquid biofuels ("furanic biofuels"). These are in some ways superior to ethanol. For example, compared to ethanol, 2,5-dimethylfuran has a higher energy density, has a higher boiling point (by 20 °C), and is not soluble in water.

Here is a study from the Institute of Chemistry at the University of Rostock, Germany: Hydroxymethylfurfural (HMF) Biomass-Derived Platform Chemicals: Thermodynamic Studies on the Conversion of 5-Hydroxymethylfurfural into Bulk Intermediates

An a article in Technology Review (link here) reports on research about a new catalyst (chromium chloride) that can get the most HMF from glucose and works at temperatures of 80 °C for fructose and 100 °C for glucose.

External Links