Recursion

From Open Source Ecology
Revision as of 19:07, 2 February 2009 by WikiSysop (talk | contribs)
Jump to navigation Jump to search

From an email by Nathan Cravens of Effortless Economy

http://effortlesseconomy.com/

A recently adopted word, "recursion," has been useful in considering what is needed to create "a thing." Recursion is something touched on when describing casting the metal for LifeTrac. Some may want to purchase the product of the cast and save construction time. Others, knowing it is well worth the time toward the effort itself, will go "one recursion down" to reduce the financial cost of construction. The further up the constructive recursion, the greater the financial cost; the lower down in the constructive recursion, lesser financial cost follows.

As a general example, 4 hours to produce a design will mean not laboring for 60 days / 8 hours a day to purchase the same part for construction. The indentification and presentation of contrast along these lines will, I am at liberty to suspect, will fuel this work into a widespread revolutionary movement. This example would also further dampen Luddite critique which argues "technology as toil." Contrasting design construction time with labor market time at minimum wage in addition to stressing the usefulness of the design in deminishing toil will assure the 'technological transfer acceleration' of the OSE format.

Recursion Formula

Based on production rates in a foundry - $1000 per day of value generated (see Factor e Live Distillations Part 6) - and labor of $25 per hour for that time - or $200 - and one sees a 5:1 ratio of value generated to labor used.

Thus, any given device - say $2k in material costs - can be recursioned to $400 in labor, or cost/5. To that, one needs to add the value of raw feedstock - say $200 if the $2k device weighs 2000lb, and we assume that scrap steel is 10 cents per pount. On top of $2k, one typically has cost/2 in labor - as for example with the CEB press, we are expecting the machine to require 20-40 hrs in labor at $25/hour - or $500-$1k.

So the price formula evolves to:

C = C_s + C_L + C_F

where C is the total cost, C_s is the cost of scrap steel, C_L is the cost of labor, and C_F is the cost of foundry labor.

We've ob