Compressed Air Storage: Difference between revisions

From Open Source Ecology
Jump to navigation Jump to search
No edit summary
Line 7: Line 7:
<html><iframe src="https://www.facebook.com/plugins/post.php?href=https%3A%2F%2Fwww.facebook.com%2FOpenSourceEcology%2Fposts%2F10154900144236562%3A0&width=500" width="500" height="579" style="border:none;overflow:hidden" scrolling="no" frameborder="0" allowTransparency="true"></iframe></html>
<html><iframe src="https://www.facebook.com/plugins/post.php?href=https%3A%2F%2Fwww.facebook.com%2FOpenSourceEcology%2Fposts%2F10154900144236562%3A0&width=500" width="500" height="579" style="border:none;overflow:hidden" scrolling="no" frameborder="0" allowTransparency="true"></iframe></html>
=Calculations=
=Calculations=
For volume of 500 gallons (propane tank) -


E=Pressure x Volume.
E=Pressure x Volume.
Line 13: Line 15:
  =2.7 million Joules
  =2.7 million Joules
  =.75 kW hr
  =.75 kW hr
For comparison - if one could generate an average of 50W via wind power, that appears to be an easier route of power generation.


=Links=
=Links=
*EPRI head states that air will be cheaper per watt hr store than batteries. - [http://www.bloomberg.com/news/articles/2014-06-05/sustainxs-compressed-air-storage-may-boost-renewable-energy]
*EPRI head states that air will be cheaper per watt hr store than batteries. - [http://www.bloomberg.com/news/articles/2014-06-05/sustainxs-compressed-air-storage-may-boost-renewable-energy]
*Cost Comparison of Energy Storage - [https://books.google.com/books?id=TPReBwAAQBAJ&pg=PA180&dq=cost+comparison+of+air+storage+to+batteries&hl=en&sa=X&ved=0ahUKEwjfgevCj4PNAhXLx4MKHQXAA4QQ6AEINTAC#v=onepage&q=cost%20comparison%20of%20air%20storage%20to%20batteries&f=false]
*Cost Comparison of Energy Storage - [https://books.google.com/books?id=TPReBwAAQBAJ&pg=PA180&dq=cost+comparison+of+air+storage+to+batteries&hl=en&sa=X&ved=0ahUKEwjfgevCj4PNAhXLx4MKHQXAA4QQ6AEINTAC#v=onepage&q=cost%20comparison%20of%20air%20storage%20to%20batteries&f=false]

Revision as of 01:47, 8 January 2017

Taking example calculation at https://en.wikipedia.org/wiki/Compressed_air_energy_storage -

a 250 gallon propane tank stores 1 kWhr of energy when compressed to 200 PSI. Pressure rating of propane tanks is 215 PSI - [1]. Taking efficiency of an air engine - generator to be 50% - we have .5 kWhr. So a 500 gallon tank would get us 1kW hr of usable energy.

See comments below:

Calculations

For volume of 500 gallons (propane tank) -

E=Pressure x Volume.

=200 PSI x 1.9 cu meters
=1,400,000 Pascals x 1.9 cu meters
=2.7 million Joules
=.75 kW hr

For comparison - if one could generate an average of 50W via wind power, that appears to be an easier route of power generation.

Links

  • EPRI head states that air will be cheaper per watt hr store than batteries. - [2]
  • Cost Comparison of Energy Storage - [3]