Symbolic Analysis of SI Units: Difference between revisions
Jump to navigation
Jump to search
(Created page with "Expressed in combinations of SI units, the farad is: :<math>\text{F} = \dfrac{\text{s}^4 {\cdot} \text{A}^2}{\text{m}^{2} {\cdot} \text{kg}} = \dfrac{\text{s}^2 {\cdot} \text{...") |
No edit summary |
||
Line 14: | Line 14: | ||
= \dfrac{\text{s}^{2}}{\text{H}}, | = \dfrac{\text{s}^{2}}{\text{H}}, | ||
</math> | </math> | ||
{{https://en.wikipedia.org/wiki/Farad}} |
Latest revision as of 19:10, 10 May 2020
Expressed in combinations of SI units, the farad is:
- <math>\text{F}
= \dfrac{\text{s}^4 {\cdot} \text{A}^2}{\text{m}^{2} {\cdot} \text{kg}} = \dfrac{\text{s}^2 {\cdot} \text{C}^2}{\text{m}^{2} {\cdot} \text{kg}} = \dfrac{\text{C}}{\text{V}} = \dfrac{\text{A} {\cdot} \text{s}}{\text{V}} = \dfrac{\text{W} {\cdot} \text{s}} {{\text{V}^2} } = \dfrac{\text{J}}{{\text{V}^2} } = \dfrac{\text{N} {\cdot} \text{m}} {{\text{V}^2} } = \dfrac{\text{C}^2}{\text{J}} = \dfrac{\text{C}^2}{\text{N} {\cdot} \text{m}} = \dfrac{\text{s}}{\Omega} = \dfrac{1}{\Omega {\cdot} \text{Hz}} = \dfrac{\text{s}^{2}}{\text{H}}, </math>