Team Wikispeed: Difference between revisions

From Open Source Ecology
Jump to navigation Jump to search
Line 138: Line 138:
=References=
=References=
{{Reflist}}
{{Reflist}}
* http://futureofprojectmanagement.com/2011/12/02/joe-justice-built-a-100mpg-car-using-principles-of-agile-lean-and-scrum-how-did-he-do-it/


[[Category:Open Source Automobile]]
[[Category:Open Source Automobile]]

Revision as of 23:48, 23 February 2012

This page is for specific lessons that have been learned in one area that can be applied to other areas. If it's a lesson learned that only applies to the area it was learned in, then it's better to document it in that specific area.

Team Wikispeed

Wikispeed is a team of volunteers that formed around the work of Joe Justice as he competed in the Progressive Insurance Automotive X-Prize. His greatest innovation was applying lean/agile/SCRUM software program management to hardware, specifically the iterative design of a 100+ mpg passenger vehicle.

The dramatic success of Team Wikispeed's activities pretty much demands listening to what Joe has to say.

For clarity, and because I wasn't clear on this point until I researched it, it is important to point out that Team Wikispeed was eliminated in the first round of on-location testing at the X-Prize competition. "Without even bothering to look at the finite element analysis and computational fluid dynamics Justice had brought as proof of his design’s validity, the inspector rejected the car outright. Justice felt like he’d been slapped in the face. “It was like fireworks going off in my cheeks,” he says. “This is something I’ve had a whole lot of design input into, and this one person is saying, ‘This isn’t good enough.’...Rather than spending hours pulling apart the SGT01 to get to the suspension, the team simply unbolted the body, removed the suspension module, and began fabricating a new one. They got it done, too, just in time. The only problem was that as they finished, minutes before the deadline, Justice and another team member cut a wire in the electrical system. The car wouldn’t start, and Wikispeed’s run for the X Prize was done. They finished in a tie for 10th in their division." article

TED talk:

General

  • First functional prototype built in 3 months.
  • Existing manufacturing processes are slow to change because they're exceptionally expensive to change.
    • Major manufacturers typically operate on 10-25 year design cycles.
  • Wikispeed uses 7-day design cycles.
  • Iterated a process that brought the cost/time of a full structural carbon fiber car body down from $36,000/3 months to $800/3 days.
  • Went from 1 guy in his garage to 100+ volunteers, in 8 countries, and a production-ready car in 6 months.

Specific

  • Modularity.
    • Every system in the car can be separated from every other system as quickly and easily as changing a tire.
  • Test-based.
    • The customer-value standard, and the test for it, is designed BEFORE the solution is designed.
  • Use less stuff.
    • The parts for the frame of the car can be built with stock 4" aluminum tube, an $80 band saw, and a used-kit-built CNC milling machine.
    • Reduce costs in tooling, machinery and complexity wherever possible. This allows for improvements to be incorporated into the design immediately because there are so few sunk costs.
  • Distributed, collaborative teams.
    • Use free online tools.
  • Morale for velocity.
    • It's not additive or subtractive, it's a multiplier.
  • Work in pairs.
    • Put a newbie with a pro and the newbie learns AS the job gets done. This eliminates time devoted to training. The pro gets help, the newbie gets hands-on experience.
    • Also eliminates the need for most types of documentation.
  • Visualize workflow to eliminate any time spent not creatively solving problems.

Keynote American Council of Engineering Companies


Summary: Scrum Gathering in Seattle


This is a summary of the talk:

History

  • Initial Goal: build the lightest chassis.
  • Share on the blog
    • asked silly and nerdy questions
  • passes technical deliverables for the X prize.
    • became finalist to compete with 136 cars, most of them funded by millions of dollars
    • iterating the car at the race track, inspired a higher driver of a team competing against WikiSpeed to spend a lot of time hanging out with the Team.
    • got 10th place.
    • Received several tens of thousands of dollars in road legal certification and testing.
    • Press
  • Team grew: 56 members in 6 countries.

Learned

  • Contract-first Design: by Modules.
    • Suspension - changed for 10 minutes - adjustable in caster, tow?, camber, wheel-base and track, individually per wheel.
    • Interior in the race car version - aluminum bathtub that lifts out. The 4-seat interior for the contest can be easily exchanged with the 2-seat interior for testing.
    • Engine - at the back of the car. The entire Power Train, with its transmission, fuel tank and cooling system can be rolled out in the time it takes to change a tire while it is running. This let us have one engine on the test bench being evaluated and another engine in the car doing testing, bring the car, switch the engines, test the other one - able to develop and test engines independently of each other.
    • Chassis - all other modules connect to. Side, front, front impact. Peak stress. Our entire car absorbs the weight. 5 star crash rating equivalence.
    • Car Body - cut foam with CNC machine from a CAD design, sand it, (70 volunteers in 6 countries in multiple locations)
      • from Structural Carbon Fiber (normally used in airspace and exotic automobiles) was really expensive, but the material itself wasn't expensive, but the knowledge how to use it was. So Joe Justice went to composite school for few weeks and then they built the carbon fiber body for $800 in 3 days (body would cost $36,000 in 3 months time with traditional manufacturing techniques).
  • Went to North American International Auto Show - put WikiSpeed on the main floor between Ford and Chevrolet. Met the creator of the car body, Rob Mohrbacher of http://mohrcomposites.com from Germantown, Maryland.

How - Agile and Scrum

  • Weekly stand-up meetings
  • prioritized backlogs
  • and demos

Tools

  • FreeConferenceCall - for stand-up meeting
    • What I did, what I will do, what is blocking me
  • Skype free
  • Google Groups - up-to-date daily, pictures, updates, backlog from a Google Doc
  • Google Docs - documents collaboration
    • Trust the Team. It is versioned - who changed, what when. Can be reverted.
  • Avoid planning more than 2 weeks out - we learn so fast that things change what we will do next
  • Facebook and LinkedIn for team and public status updates.
    • don't repeat information sharing.
  • DropBox and SkyDrive for sharing large files
  • Youtube to share videos
  • Scrumy - online project management tool loosely based on Scrum.
  • Linoit.com - for backlog http://linoit.com
  • LibreCAD - open source CAD for Windows, Apple, Linux
  • Email Lists
    • Always Reply All to approximate being in a Scrum room. Allows distributed team to skim emails and be appraised of the current state of the project.[1]

Principles - What worked well

  • By minimizing cost of making change we innovate quickly. Changes in team members, changes in goals, changes in machinery, changes materials.
  • By loosely coupling modules, we make changes in parallel.
    • E.g. split the car into its component modules. Have people working on the suspension system, drive train, emission system, headlights, electronic control mechanism, all in parallel.
    • Modularity: Interior module, Chasses, Pedal Plate, Front Crush Structure, Suspension Module, Engine, Transmission, Fuel System, Emission System, Fuel Injection System, Breaking system.
    • When we started designing the car, we didn't know how the chassey would end up being like, we didn't know what type of drive train, type of suspension, we will be using. So what we wanted to do is to reduce the cost to make change between those parts. So we architect a contract - the way these modules will talk to each other and hold together in a structural way and the way they communicate.
  • By working collaboratively and in shared space we unblock quickly.
    • E.g. everytime we had a blocking issues the team was able to bulldoze it that same day. Pairing and Swarming worked very well.
  • By first automating test we quickly know if we improved. (Test-driven manufacturing)
    • Example
      • 100mpg on a highway cycle
      • etc.
    • When changes came we quickly knew whether we moved entirely forward, or moved forward on a few fronts, but actually backed on to other fronts. So we had to quickly kill work that would have been actually damaging and thus we were moving forward very fast.
  • Test our success criteria - everyone cared about the metrics!
  • Team morale (motivation) is a multiplyer for velocity.
    • Make sure people are never or rarely frustrated and that they are get to share successes. Celebrating every iteration.
  • Team trust is empowering
    • Question access restrictions on documents, avoid group subjugation. Empowerment keeps velocity high.
  • Single Backlog - all prioritized tasks are visible and in one place

Modular Inventory

  • Whenever possible tools are visually next to their consumables.
  • Fewest possible categories always inside of each other (See everything from where you stand)
  • Minimize time spent doing anything but creative problem solving.

From Software

  • Agile - reduse cost to make change and iterative development
  • Test-Driven Design - tester and manufacturing
  • XP - pairing and swarming
  • Scrum - almost everything. Clearly defined roles and responsibilities.
  • OOP - clearly defined modules, classes and interfaces
  • Kanban - work in progress limits, not to overload people.
  • Contract First Development - Define precise and verifiable component interface specifications.

Wikispeed Future Developments

  • Making a family car
  • Developing a truck


Next Step in History

Assessment: car is highly OSE Specifications compliant. OSE should determine desirability of adaptation of this design as the Open Source Automobile

References