Build Ergonomics: Difference between revisions

From Open Source Ecology
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
#Complexity
#Complexity


Any single step can be defined as one operation with 2 hands. For example, take a nut and insert it into another 3D printed piece. That is One Step.
Any single step can be defined as one operation with 2 hands. For example, take a nut and insert it into another 3D printed piece. That is One Step. Or, take a nut and put it on a bolt. That is one step. Done manually - that is a minute - done with an impact wrench - it's seconds.


Counting the number of steps as such gives an idea of build complexity. A build with 3525 steps - with a minute per step, would take 60 hours to complete. That is a realistic estimate of, say, a tractor build.  
Counting the number of steps as such gives an idea of build complexity. A build with 3525 steps - with a minute per step, would take 60 hours to complete. That is a realistic estimate of, say, a tractor build.  


About one minute per step is a reasonable, rough estimate for many actions. This principle is an effective way to assess overall build time: simply take the number of steps: say 254 - and guess that it it took ~4 hours to do a build.
About one minute per step is a reasonable, rough estimate for many actions. This principle is an effective way to assess overall build time: simply take the number of steps: say 254 - and guess that it it took ~4 hours to do a build.
To reduce build time - we can assess each step - and see what optimization can be made: such as using power tools, CNC tools, or redesigning for simplicity. The last point has the most impact on build time: it separates good design from bad design.
In today's world - sleek-looking black boxes dominate the product landscape. What about designs that are designed for easy repair? The sleek-looking black box is good design - if it can be repaired/reused. For example, it appears that Tesla cars are junk in this regard - Tesla cars are already filling up junkyards.




=Links=
=Links=
*[[OSE Instructional Guidelines]]
*[[OSE Instructional Guidelines]]

Revision as of 18:43, 27 August 2020

Build ergonomics - the level of effort for a build, can be evaluated meticulously. We need to define:

  1. Number of steps
  2. Weight involved
  3. Time involved.
  4. Complexity

Any single step can be defined as one operation with 2 hands. For example, take a nut and insert it into another 3D printed piece. That is One Step. Or, take a nut and put it on a bolt. That is one step. Done manually - that is a minute - done with an impact wrench - it's seconds.

Counting the number of steps as such gives an idea of build complexity. A build with 3525 steps - with a minute per step, would take 60 hours to complete. That is a realistic estimate of, say, a tractor build.

About one minute per step is a reasonable, rough estimate for many actions. This principle is an effective way to assess overall build time: simply take the number of steps: say 254 - and guess that it it took ~4 hours to do a build.

To reduce build time - we can assess each step - and see what optimization can be made: such as using power tools, CNC tools, or redesigning for simplicity. The last point has the most impact on build time: it separates good design from bad design.

In today's world - sleek-looking black boxes dominate the product landscape. What about designs that are designed for easy repair? The sleek-looking black box is good design - if it can be repaired/reused. For example, it appears that Tesla cars are junk in this regard - Tesla cars are already filling up junkyards.


Links