RotoKnitic v19.01

From Open Source Ecology
Jump to navigation Jump to search

Using same parts and materials from OSE CircularKnitic v18.03, but switch mounting plates so that the mountain is stationary.

  • requires spinning spool for fabric output
  • allows for more multiple mountains and input threads

Design

Concept

Standard

RotoKnitic - Concept Drawing 20190102.png

google doc

Pick-a-Needle

OSE - RotoKnitic Pick-a-Needle - Concept Drawing 20190427.png

google doc

Goals

  • change direction
  • sock heels

Needle Accomidation

  • pick-a-needle, optionally raise needles to an inactive postion
  • Test laser cut needles, printed latch?
  • Test 3D printed needles

Fabric Spool

  • Apply constant tension on fabric
  • Roll onto spool for easy handling and storage


Provisional BOM

Part SCAD Code

Variable Profiles

CKvars.scad

Needles

2D Laser Cut Parts

3D Printed Parts

p4 "yarn holder"

include <CKvars.scad>;

CKp4();


module CKp4(){
    
    rez=p2number*p2needles*2;
    
    $fn=rez; //defines resolution of circles.
       
    translate([p4baseOD/2,0,0]){
        
    difference(){  
        union(){
    cylinder(h=p4baseH,d=p4baseOD-(p4basegapW*2)-((p4baseW-p4basegapW)/2*2));            
            
            //ramps
           
            
            for(i=[1:p2needles*(p2number/p4number)]){
        rotate([0,0,(360/p2number/p2needles)-(360/p2number/p2needles*i)-(((360/p2number/p2needles))/2)]){        
           

            
            difference(){
            minkowski(){
            union(){
            translate([-p4baseOD/2+p4rampfromOD,p4rampWm/2,p4rampH+p4baseH-(p4rampC1/2)])
            rotate([90,0,0])
            cylinder(h=p4rampWm,d=p4rampC1);
            
            intersection(){
            translate([-10,0,3.82])
            translate([-p4baseOD/2+p4rampfromOD,p4rampWm/2,p4rampH+p4baseH-(p4rampC2/2)])
            rotate([90,0,0])
            cylinder(h=p4rampWm,d=p4rampC2);
                
                            translate([-7,0,-2.86/2])
            translate([-p4baseOD/2+p4rampfromOD,p4rampWm/2,p4rampH+p4baseH-(p4rampC2/2)])
            cube([p4rampC2,p4rampC2,p4rampC2],center=true);
            
            }
        }//end union
        
difference(){
translate([-p4rampMinkD/2,0,0])
cylinder(d=p4rampMinkD,h=0.01, $fn=36);
translate([-p4rampMinkD,0,-0.01])
cube([p4rampMinkD,p4rampMinkD,0.02], center=true);    
} //end diff

} //end mink
        
       translate([-p4rampC2/2,0,0])
       translate([-p4baseOD/2+p4rampfromOD,p4rampW/2,p4rampH+p4baseH-(p4rampC2/2)])
       cube([p4rampC2,p4rampC2,p4rampC2+1],center=true);
        
       translate([0,0,0])
       translate([-p4baseOD/2+p4rampfromOD,p4rampW/2,p4baseH-(p4rampC2/2)-0.1])
      cube([p4rampC2,p4rampC2,p4rampC2],center=true);  
  
        
               translate([0,-p4clawW/2,0])
       translate([-(p4baseID/2)-p4rampfromID,0,p4baseH])
        cube([(p4baseID/2)+p4rampfromID,p4clawW,p4rampoverhangH]);
        
            translate([-7,0,0])
            translate([-p4baseOD/2+p4rampfromOD,(p4rampW/2)+(p4rampC2/2)-0.01,p4rampH+p4baseH-(p4rampC2/2)])
            cube([p4rampC2,p4rampC2,p4rampC2],center=true);
        
        translate([-7,0,0])
            translate([-p4baseOD/2+p4rampfromOD,-(p4rampW/2)-(p4rampC2/2)+0.01,p4rampH+p4baseH-(p4rampC2/2)])
            cube([p4rampC2,p4rampC2,p4rampC2],center=true);
        
        
    }//end ramps difference
    

    
} //end for rotate
    
} //end for


    
            //claws
            
        for(i=[1:p2needles*(p2number/p4number)]){
        rotate([0,0,(360/p2number/p2needles)-(360/p2number/p2needles*i)-(((360/p2number/p2needles))/2)]){
            hull(){
            translate([-p4baseOD/2,-p4clawW/2,0])
              #cube([(p4baseOD-p4baseID)/2,p4clawW,p4basegapH]);
            translate([-p4baseOD/2,-((p4rampW+p4clawWslanttop)/2),p4baseH-0.1])
              #cube([(p4baseOD-p4baseID)/2,p4rampW+p4clawWslanttop,0.1]);

            } //end hull
        }
    }//end for
            
        } //end main union
    cylinder(h=p4baseH,d=p4baseID);
    
    //simiple chamfer of inside corner    
    translate([0,0,p4baseH-0.5])
    cylinder(h=0.5,d1=p4baseID+0.5,d2=p4baseID+1.9);    
    translate([0,0,p4baseH-0.5-0.5])
    cylinder(h=0.5,d1=p4baseID,d2=p4baseID+0.5);    

        
    translate([-p4baseOD/2,-p4baseOD/2,0]){    
    cube([p4baseOD,p4baseOD/2,p4baseH]);
    }
    rotate([0,0,-360/p4number]){
    translate([-p4baseOD/2,0,0])    
    cube([p4baseOD,p4baseOD/2,p4baseH]);        
    }

difference(){
    cylinder(h=p4basegapH,d=p4basegapOD);  
    cylinder(h=p4basegapH,d=p4basegapID);    
}


//bolt holes        
            for(i=[0:(p2number/p4number)-1]){
         rotate([0,0,(-360/p2number/p2needles*0.5)+(i*-360/p2number)]){
             

if(p2p4type==1){
    translate([-(p4baseOD/2)+((p4baseOD-p4baseID)/2),0,p4holeH])
    rotate([0,270,0])
translate([0,0,0])
union(){
cylinder(d1=p2p4flatHD,d2=0,h=(p2p4flatHD/2)/tan(45),$fn=36);
translate([0,0,-(p2p4flatHD)/tan(45)])
cylinder(d1=p2p4flatHD*3,d2=p2p4flatHD,h=(p2p4flatHD)/tan(45),$fn=36);
cylinder(d=p2p4flatD,h=((p4baseOD-p4baseID)/2)+2,$fn=36);
}//end union
}//end if
if(p2p4type==0){
    translate([-(p4baseOD/2)+((p4baseOD-p4baseID)/2),0,p4holeH])
    rotate([0,270,0])
translate([0,0,0])
union(){
translate([0,0,-p2p4boltHH/2])
cylinder(d=p2p4boltHD,h=p2p4boltHH,$fn=36);
cylinder(d=p2p4boltD,h=((p4baseOD-p4baseID)/2)+2,$fn=36);
}//end union
}//end if


}
}

//second set
       for(i=[0:(p2number/p3number)-1]){
        rotate([0,0,-(360/p2number/p2needles*0.5)+(360/p2number/p2needles)+(i*-360/p2number)+(-360/p2number)]){
 
if(p2p4type==1){  // if flat socket
    translate([-(p4baseOD/2)+((p4baseOD-p4baseID)/2),0,p4holeH])
    rotate([0,270,0])
translate([0,0,0])
union(){
cylinder(d1=p2p4flatHD,d2=0,h=(p2p4flatHD/2)/tan(45),$fn=36);
translate([0,0,-(p2p4flatHD)/tan(45)])
cylinder(d1=p2p4flatHD*3,d2=p2p4flatHD,h=(p2p4flatHD)/tan(45),$fn=36);
cylinder(d=p2p4flatD,h=((p4baseOD-p4baseID)/2)+2,$fn=36);
}//end union
}//end if
if(p2p4type==0){  // if regular socket
    translate([-(p4baseOD/2)+((p4baseOD-p4baseID)/2),0,p4holeH])
    rotate([0,270,0])
translate([0,0,0])
union(){
translate([0,0,-p2p4boltHH/2])
cylinder(d=p2p4boltHD,h=p2p4boltHH,$fn=36);
cylinder(d=p2p4boltD,h=((p4baseOD-p4baseID)/2)+2,$fn=36);
}//end union
}//end if

} //end rotate
} //end for
//end mounting holes
 
    //trim end       
    if(p4number>1){
    rotate([0,0,-(360/(p4baseOD*PI/p4endtrim))])
 mirror([1,1,0])
 cube([p4baseOD/2,p4baseOD/2,p4rampH+p4baseH]);   
    
}
    
    
    } //end main difference
} //end main translate
    
    
} //end module
 

Parts

Pontiac Coil L-09

Pontiaccoil.png


PCL90();

module PCL90(){
    
x=36.576;
y=41.402;
z=51.308;

topz=28.448;  ///distance from base to center of top mount hole
top2stroke0=42.7482;
top2stroke1=68.1482;  
plungerholeD=2.4384;
plungercutZ=9.652;
plungercutY=3.556;    
plungertop2c=3.9624;

holeOD=4.1656;
botz=topz-12.7;

D=12.7;

difference(){
    union(){
cube([x,y,z]);
translate([x/2,y/2,topz])
    difference(){
cylinder(d=D,h=top2stroke0+plungertop2c);
translate([0,D/2,top2stroke0])
rotate([90,0,0])     
#cylinder(d=plungerholeD,h=D);     
translate([-D/2,-plungercutY/2,top2stroke0+plungertop2c-plungercutZ])
#cube([D,plungercutY,plungercutZ]);       
    }
}
translate([23.7998/2,0,0]){
translate([x/2,y,topz])
    rotate([90,0,0])
cylinder(d=holeOD,h=y);

translate([x/2,y,botz])
    rotate([90,0,0])
cylinder(d=holeOD,h=y);
}
translate([-23.7998/2,0,0]){
translate([x/2,y,topz])
    rotate([90,0,0])
cylinder(d=holeOD,h=y);

translate([x/2,y,botz])
    rotate([90,0,0])
cylinder(d=holeOD,h=y);
}


}//end main diff    
    
    
}//end module
 

Full Assembly

BOM

TODO

  • remove p8 plate connector under mountain
    • put hole for makerbeam on plate below
  • breakup tabletop plate into multiple pieces to make max size smaller
  • could make all cut plates hexagons except for geared plate.
    • could make geared a little larger if move support spacer to bridge stepper gear

Links

https://www.thingiverse.com/thing:2072364/files