Proposal 2008 D Metric Notes
APPENDIX D: METRIC NOTES
General Notes - Market Size The general comment on market size is that we are taking on the order of 1 Billion people worldwide. If each such human spends $1000/year on a given item, then the global market is $1 Trillion. Most of the services covered by the 16 technologies, such as housing, energy, and transportation - are costs that easily reach $1k/year worldwide, so most of the market sizes score a 10 because of the services that the technologies are capable of providing or replacing. It should be noted that these costs are recurring - for example, one keeps paying rent or mortgage year after year. Once the 16 technologies are made available, then costs of the services provided are eliminated. This leads to:
Liberatory Potential. For example, the sun sends no bills when electricity is obtained with a solar turbine. As another example, when someone procures a CEB to build their own housing, housing costs are reduced or eliminated. When one procures a DfD, lifetime car, then maintenance costs are reduced or eliminated. Car operating costs are eliminated when one can produce their own fuel, and can fabricate their own parts from online blueprints with a flexible Fab Lab. Particularly interesting is the option of producing one's own metals - from scrap via metal casting - or from clay if extraction of aluminum from clay is perfected as a home-scale technology. Liberatory potential refers to the elimination of the costs of living. The 16 technologies are chosen so that they provide $500-$4k of expense saving per year. That's approximately $30k/year, or the elimination of just about all the costs of living.
Livelihood Creation Livelihood creation calculations rationale is as follows. If one assumes a thriving, technologically advanced society, then it follows that one is interested in division of labor to allow specialized advancements. Specialization is desirable only in so far as it does not lead to bureaucracy, unaccountability, centralized control, closed systems (proprietary information flows), and other forms of waste. With this in mind, we propose the following regime for the division of labor.
First, we assume, according to principles of permaculture, that stable civilization may be produced at an organizational unit level of up to 10,000186 people. That population constitutes a functional, as opposed to dysfunctional, city, living in harmony with its surrounding life support system. For practical purposes, we are making a claim that the minimum community size that allows for the absolute highest level of societal progress, spiritual and technical, may occur at the level of 100 people. Here is our reasoning for this claim.
In any human settlement, there exist both basic needs - such as food and shelter - and higher evolution functions, such as personal, political, spiritual, and technological advancement. This is borrowed from the concepts of Maslow's Pyramid187. If we consider the provision of basic needs, then we are talking about food, energy, shelter, water, clothing, and the technologies that convert natural resources into human-usable form. In today's society, some consider computers and communication as a 'need.' A desirable advanced technology program revolves around the electronics behind the global internet infrastructure, plus the tools and know-how that make the provision of basic needs a trivial task. It should be underscored here that with all of today's advanced technology, the promise of meeting basic needs effectively for all humans has not been achieved. Indeed, those in advanced countries today spend increasing, as opposed to decreasing working hours.188
Other human enterprises that contribute to healthy societies include education, governance, health services, means of exchange (commerce and money), and creative and spiritual pursuits.
We are proposing a reality of small-scale, autonomous republics with the proverbial everybody gets along. Such communities are self-governed, by means of voluntary contract,189 with personal freedom bounded by the respect for the freedom of others. Contract refers to the voluntary interaction, where a community enforces its own agreements by whatever means necessary, congruent with maxims of natural (human and divine) law. Such a contract, in a self-determined society, is by nature conducive to peaceful, freedom-loving, truth-seeking intercourse between communities.
Note that armies were not mentioned nor recommended in advanced cultures. We believe that the above republics will be safe by design. If they are autonomous in the provision of their needs, then they have no innate and uncontrollable impulse for pursuing resource conflicts, also known as wars. At the very least, a standing army should not be present, as suggested by the leadership in the newly-born American states,190 and volunteers should rise to any real, as opposed to engineered, challenge. Engineered challenges are harder to support, if propaganda mechanisms are weakened by a culture of truth.
The proposed communities of interest, by design, eliminate the need for bureaucracy. Bureaucracy is a byproduct of large-scale, centralized systems - which are nonexistent in a community of 100 people. Small scale and a transparency promotes personal accountability, and eliminates most of the fuel for bureaucracy. Political-legal-financial top-down control systems are obsolete in this scenario.
Education is provided via self- and home-learning of literacy and numeracy, followed by experiential learning of becoming a productive individual in a wide range of endeavors. Further theoretical developments - such as pure scholarship and research careers - may be supported via economic surplus in the community. The norm in such a community would be indeed the farmer-scientists: applied scientists who also contibute at least somewhat to their own subsistence. Such subsistence could be as easy as harvesting apples or installing solar turbine electric capacity.
Health services are provided via a healthy diet and meaningful lifestyle. This eliminates 99% of life-threatening personal and iatrogenic dangers, and leaves about 1% rightful hospital function to life-threatening accidents.191
What is the largest single occupation in America? It is salespeople. In the 100 person community, those do not exist. There is no need for marketing or market expansion when one is largely self-sufficient, as pursuit of aggrandizement is replaced with higher pursuits related to voluntary action and leisure. Leisure is that time beyond the time required to produce a livelihood. Aggrandizement loses its attraction in a community of meaning.
To sum up, we propose that a 100 person community is sufficient in size to allow for its own survival, thriving, and contribution to human progress and evolution. Above considerations indicate that 100 people are sufficient to cover basic needs - food, shelter, housing, so forth, up to flexible fabrication techniques for producing advanced technology. This includes the extraction of basic resources, such as production of fuel, cooking gas, building materials such as CEBs, mining and metallurgical operation, all types of chemical synthesis, electronics production, lumber, food, and fiber production. Given the proposed irrelevance of armies and complex policital-legal-financial systems, the only remaining endeavors that must be taken care of in a community are provision of needs. Advanced technology, which allows for the effective provision of needs, must be covered. Education is self-contained, and does not require heavy investment, if open source programs of learning exist. Cultural and scientific creation is supported. Governance is minimized by virtue of appropriate scale. Commerce occurs by trading, and printing of individual or collaborative currencies backed by physical products. Advanced technology can provide for computer and communications infrastructures, as well as for advanced medical procedures.
These considerations cover just about everything under the sun for allowing a community to thrive, and thereby contibute to advancing civilization. One need not be concerned with absolute centralization agendas at this point, when funding for such begins to evaporate in the presence of a strong localization movement.
A sample population of a thriving community may be embodied in the following enterprises, which inherently include the possibility of excess production for market. It should be considered that these roles can and should be dynamic, in that the roles may be shared and transferred between members.
- 1 general manager to clarify focus and set direction of community
- 10 people responsible for agriculture, food processing, and feeding of the community. This includes a garden, greenhouse, field crops animal husbandry, orcharding, nursery, aquaculture, and mushrooms. A significant portion of energy goes to food processing for 100% food sufficiency, year round. All needs are covered, and wants may be covered by trade if they can't be provided locally.
- 5 builders for natural building, greenhouses, and other features of the built environment. They produce brick, lumber, glazing, tubing, and other building materials.
- 1 land steward- one who informs the community about sound land use, and is responsible for site maintenance
- 1 manager for water and other plumbing systems
- 1 person for providing electricity, power, and maintaining the electrical grid via CHP, solar-integrated systems
- 1 person for maintaining the internet and computing infrastructure
- 2 mechanics to maintain cars, tractors, agricultural and heavy equipment. This is before optimized, open source design is available, where one feauture of such design is the feasibility of maintenance by non-specialist users.
- 1 fuel producer for vehicle fuels and cooking gas
- 1 communication and PR person to publish information, recruit volunteers and members
- 1 educator, developing 'K-through Ph.D.' Renaissance Freeholder Education for Evolution to Freedom, to be undertaken as self-learning or as a more organized program in a group setting
- 5 health practitioners - for preventive medicine including yoga, meditation, mind-body work, psychology, dance, herbology, healthy diet, massage, and other natural and technology-assisted augmentation practices
- 1 general resource developer for fundraising, donations, and recycling
- 1 recycling center operator for producing mulch, woodchips, metals for metal casting, useful plastic products such as composite lumber, plastic forms, and glazing
- 5 fab lab operators - essentially to produce just about anything
- 2 testing, materials science, lab operator
- 1 product certification developer, user educator, standards-developer, and quality control manager
- 1 general product designer and planner, spanning housing, facility design, landscaping, and physical products
- 1 expert in law - to interface with an external legal system, if any
- 1 expert in financial matters of exchange - to maintain smooth flow of trade and commerce with other communities, and accounting
- 1 medical practitioner
- 1 veterinarian
- 1 governance developer - to make sure that the voluntary participant contract is maintained, updated, and that violators are ejected from the community after ample chance to reform or comply
- 1 replicator - a person who deals with acquiring land and forming new communities
That is a total of only 46 people. In that number, we already include full sufficiency in food, energy, housing, transportation, and technology, as well as legal, financial, governance, research, education, health, and replication functions. This leaves 54 people for all types of other pursuits. The community should be so small that everyone who participates makes a significant contribution to the community - without being a burden - and that interpersonal relationships are so mutually-reinforcing that each participant has a self-interest to help others. Each should be literate, numerate, and continuing in their self-education to become the most competent, judicious, and wise. The latter promotes smooth community operation - according to the maxim that the best form of governance is individual responsibility.
Summa summarum, the above case indicates that 100 people are more than sufficient to promote the highest level of civilization, as all types of essential pursuits can be embodied in such a population. One may argue against this program in that such is feasible only when the individuals selected are all renaissance people. This is possible, and replicable - if education is reinvented in society, so that people are able to learn to their maximum potential, from an early age, in an open and experiential learning system, without being dumbed down into subjection. One may also argue, that it may be impossible to produce raw resources with so few people. This is not true in agriculture. It is also not true for high-tech items if one has access to flexible and digital fabricatin fueled by open source designs. It may be more difficult to extract and process raw, natural materials- especially geological mineral resources- on a small scale. However, this also does not have to be so when judicious design allows for other alternatives. Examples may be solar turbines instead of nuclear power, or aluminum extraction from clays instead of bauxite.
We base our calculations for livelihood creation a 100 person societal unit. In our 16-fold product line, we selected such enterprises that are so essential that all small communities should have them in-house.
Notes on Feedstock Abundance Solar energy-related devices, fuel crops, CEBs, lumber score well on Feedstock abundance. These feedstocks are widely available. Metals (and plastics) desirable in flexible fabrication may be obtained from the waste stream if they are recycled, so these are also relatively abundant. Moreover, if bioplastics, semiconductor refining, or aluminum extraction from clays is made available locally, then potential exists for largely self-sufficient and technologically advanced societies. This is quite feasible if enabling knowledge flows are available - as these enterprises are complex and information-rich, and marked by proprietary technique. Such high-tech items are of particular interest to the open source econmic development (OSED) movement.
Sample discussion for one product - Boundary Layer Turbine - BLT 1. Markets for the BLT include stationary and mobile power generation in cars, tools, home energy systems, heavy machinery, tools, power plants, and others. Energy conversion could be from solar concentration, chemical fuels, or falling water as working media that power. Assuming that roughly 5 billion people use electricity, cars, and other services which may derive from the BLT, this is $1k+/person infrastructure investment - w 2. Livelihood creation includes people involved in the auto, machine tooling, heavy cottage industry, electricity production, and others. This is at least 1 per 100 people in an open source economy scenario. 3. Liberatory potential. Main costs of living, outside of subsistence cultures, are: taxation (15192-50%), housing (20-25%193), cars (15%), food (15%194), communications (5%), education and recreation (10%). From these amounts, approximately 20% of the costs is eaten up by debt interest,195 in addition to about a 3% inflation rate.196 We estimate 10% reduction of labor (1 hr). This is from avoiding electricity costs in housing (via solar concentrator turbines), for a saving of $500-1000 per year, and a $500-1000 per year saving in car costs if the turbine is the engine in a lifetime-design car. 4. Population affected. Everyone uses electricity, means of transportation, and other machines, both directly and indirectly. 5. a. Fabrication infrastructure costs involve primarily a lathe and drill for fabricating the rotor. The casing may be cast or made from a tube. Dynamic balancing requires an oscilloscope, strobe light, piezoelectric element, and minor electronics work. No special space requirements exist, ourside of a workshop. b. Labor costs - No involved procedures are required, as the device is a cylindrically-symmetric stack of flat disks. The primary task is fabricating a set of disks to be mounted on a shaft. Note that the disks are flat, and not precisely shaped as in standard power plant turbines or jet engines. Machining, assembly, and balancing are the three tasks required. Machining of the shaft may be done with computer numerical control (CNC) assistance. Disks may be fabricated by: (1), outsourcing laser cutting, or (2), lathing. Total material cost is ~1/2 of the total costs. c. Material costs for a 5-10kW turbine are <$500, or approximately 1/2 the cost. d. Point 5.b. explains the low complexity of the device. e. The sourcing for metals is remote. The working fluid, water, is local. If the energy source is solar energy, then the solar turbine is quite attractive from the ecological standpoint. f. Electricity is required to run machining tools. g. Absolute disassembly and replaceability of parts is designed into the turbine. Individual disks may be replaced. Bearings may be the only wearable part. h. Full scaleability is feasible by virtue of running individual turbines in parallel. Additional power sources, such as solar concentrators, may be added as needed. Additional disks may be added to a shaft to increase power output. i. IP and overhead costs for competing devices - namely standard steam turbines or internal combustion engines - are in the billion dollar range for large facilities and development engineers. We may reduce this to a few thousand dollars with flexible fabrication and open source knowledge flows. j. Presently, feedstocks are aluminum or stainless steel, which are centralized commodities. In the future economy, aluminum extraction from clay should provide a local feedstock.
Solar Concentrators
15. Markets for solar concentrators include any arena where stationary power generation is involved. That is a $1T197 global market. It also includes process heat (industry, cooking) markets. This is under the assumption that a solar economy is adopted by virtue primarily of cost reduction and secondarily of new ethics.