OSE CircularKnitic v18.03: Difference between revisions
Jump to navigation
Jump to search
| Line 60: | Line 60: | ||
p3wiggle=0.1; | p3wiggle=0.1; | ||
p3baseH=3; | p3baseH=3; | ||
p3wallW=(nH-nY)/2; //half of needle butt | |||
p3baseID=p2ID-20-(p3wiggle*2); | p3baseID=p2ID-20-(p3wiggle*2); | ||
p3baseOD=p2OD+20+(p3wiggle*2); | p3baseOD=p2OD+20+(p3wiggle*2)+p3wallW; | ||
p3baseholefromODID=3; | p3baseholefromODID=3; | ||
p3baseholeD=3; | p3baseholeD=3; | ||
| Line 68: | Line 69: | ||
p3ridgeW2=5; | p3ridgeW2=5; | ||
p3ridgeH=5; | p3ridgeH=5; | ||
p3wallchamfW=2; | p3wallchamfW=2; | ||
p3wallchamfH=3; | p3wallchamfH=3; | ||
| Line 128: | Line 128: | ||
echo("Millimeters Between Needles:", PI*p2needlegrooveID/(p2number*p2needles)); | echo("Millimeters Between Needles:", PI*p2needlegrooveID/(p2number*p2needles)); | ||
Revision as of 03:01, 8 March 2018
Basics
- OSE's Fork of CircularKnitic
Goals
Needle Accomidation
- Long tails
- Bent back tails
- Test 3D printed needles
Fabric Spool
- Apply constant tension on fabric
- Roll onto spool for easy handling and storage
Part Code
CKvars.scad
////MAIN SETTINGS////
//select needle size file that will be used
include <CKneedleVars-SK120.scad>;
//diameter from inside edge of needles
p2needlegrooveID=274.4;
//number of "p2" parts around circle
p2number=12;
//number of needles mounted on each "p2" part
p2needles=5;
//number of "p3" parts around circle
p3number=4;
//number of "p4" parts around circle
p4number=4;
////PART SETTINGS////
//p2
needleWidth=1.8;
p2needlegroovefromID=2.2;
p2ID=p2needlegrooveID-(p2needlegroovefromID*2);
p2needlegrooveDepth=2.8;
p2H=104;
p2W=4.8;
p2OD=p2ID+(p2W*2);
p2holeH=75;
p2holeD=2;
p2holeCSD=4.01726;
p2holeCSL=1.5;
//p3
p3wiggle=0.1;
p3baseH=3;
p3wallW=(nH-nY)/2; //half of needle butt
p3baseID=p2ID-20-(p3wiggle*2);
p3baseOD=p2OD+20+(p3wiggle*2)+p3wallW;
p3baseholefromODID=3;
p3baseholeD=3;
p3baseholenumber=4;
p3ridgeW1=3;
p3ridgeW2=5;
p3ridgeH=5;
p3wallchamfW=2;
p3wallchamfH=3;
p3wallHaboveholesc=5;
p3grooveH1=18;
p3grooveH2=73;
p3grooveW=2.2;
//p4
p4rampW=4;
p4rampH=14.57;
p4rampfromID=2.5;
p4rampoverhangH=4;
p4rampfromOD=1.34;
p4rampC1=10;
p4rampC2=40;
p4rampC2transX=10;
p4rampC2transZ=3.82;
p4baseH=11;
p4basegapH=8;
p4baseW=11.2;
p4basegapW=5.09;
p4clawW=9;
p4holesnumber=3;
p4holeH=5;
//plate
pPspace1=12; //? space from main table top to first plate
pPplate1=6; //thickness of geared plated
pPspace2=12; //space between geared plate and mountain plate
pPplate2=5;
//mountain
pMwallT=7.5; //min thickness from groove to back wall
pMgroove=nH-nY-p3wallW+1; //depth of groove
pMgrooveAngle=45;
pMgrooveC1=pPspace2; //top of groove at position 1 "entrance"
pMgrooveC2=nC+2; //top of groove at position 2 "push down"
pMgrooveC3=44.25; //top of groove at position 3 "top center"
pMgrooveSlop=2;
pMwallHextra=5.75; //extra height above groove at heighest
//calculated settings
centerlineD=p2ID+(p2W+(p3wiggle*2));
p4baseOD=centerlineD+p4baseW;
p4baseID=centerlineD-p4baseW;
p4basegapOD=centerlineD+p4basegapW;
p4basegapID=centerlineD-p4basegapW;
firstcenter=(((((360/p2number/p2needles/2)/360*(p2OD*PI))-(needleWidth/2))/((360/p2number/p2needles/2)/360*(p2OD*PI)))*(360/p2number/p2needles/2))/2;
p3wallH=p3wallHaboveholesc+p2holeH+p3baseH;
////SETTINGS OUTPUT ECHOS///
echo("Total Needles:", p2number*p2needles);
echo("Millimeters Between Needles:", PI*p2needlegrooveID/(p2number*p2needles));
CKp3.scad
- Added holes in base for long tails
- does this need to be bigger to allow for some slop?
- need to tweak CKvars.scad to make p3wall thicker
- need to optimize groove height to go as low as possible
- what to do if needle has bent back tail?
include <CKvars.scad>;
CKp3();
module CKp3(){
rez=360/p2number*2*2;
$fn=rez; //defines resolution of circles.
centerlineD=p2ID+(p2W+(p3wiggle*2));
echo(centerlineD);
translate([p3baseOD/2,0,0]){
difference(){
union(){
cylinder(h=p3baseH,d=p3baseOD);
difference(){
cylinder(h=p3ridgeH+p3baseH,d=centerlineD-((p2W+(p3wiggle*2)/2)));
translate([0,0,p3baseH])
cylinder(h=p3ridgeH,d1=centerlineD-(p3ridgeW2*2)-((p2W+(p3wiggle*2)/2)),d2=centerlineD-(p3ridgeW1*2)-((p2W+(p3wiggle*2)/2)));
}
difference(){
translate([0,0,p3baseH])
cylinder(h=p3wallchamfH,d1=centerlineD+((p3wallchamfW+p3wallW)*2)+((p2W+(p3wiggle*2)/2)),d2=centerlineD+(p3wallW*2)+((p2W+(p3wiggle*2)/2)));
cylinder(h=p3wallchamfH+p3baseH,d=centerlineD+((p2W+(p3wiggle*2)/2)));
}
difference(){
cylinder(h=p3wallH,d=centerlineD+(p3wallW*2)+((p2W+(p3wiggle*2)/2)));
cylinder(h=p3wallH,d=centerlineD+((p2W+(p3wiggle*2)/2)));
}
} //end main union
cylinder(h=p3wallH,d=p3baseID);
translate([-p3baseOD/2,-p3baseOD/2,0]){
cube([p3baseOD,p3baseOD/2,p3wallH]);
}
rotate([0,0,-360/p3number]){
translate([-p3baseOD/2,0,0])
cube([p3baseOD,p3baseOD/2,p3wallH]);
}
//slots
for(i=[1:p2needles*(p2number/p3number)]){
rotate([0,0,(360/p2number/p2needles/2)-(360/p2number/p2needles*i)]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,-p3grooveW/2,p3grooveH1])
cube([p3wallW+0.2,p3grooveW,p3grooveH2-p3grooveH1]);
}
}
//base needle holes
for(i=[1:p2needles*(p2number/p3number)]){
rotate([0,0,(360/p2number/p2needles/2)-(360/p2number/p2needles*i)]){
translate([-p2OD/2-0.2,-needleWidth/2,-0.01])
#cube([p2needlegrooveDepth+0.2,needleWidth,p3wallH+0.02]);
}
}
//base mounting holes
for(i=[1:p3baseholenumber]){
rotate([0,0,(((360/p3number/p3baseholenumber))/2)-((360/p3number/p3baseholenumber)*i)]){
translate([-(p3baseID/2)-p3baseholefromODID,0,0])
#cylinder(h=p3baseH,d=p3baseholeD);
}
}
for(i=[1:p3baseholenumber]){
rotate([0,0,(((360/p3number/p3baseholenumber))/2)-((360/p3number/p3baseholenumber)*i)]){
translate([-(p3baseOD/2)+p3baseholefromODID,0,0])
#cylinder(h=p3baseH,d=p3baseholeD);
}
}
//first and last holes
rotate([0,0,-firstcenter]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
}
}
rotate([0,0,-(360/p2number*(p3number-1))+firstcenter]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
}
}
//middle holes
for(i=[0:(p2number/p3number)-1]){
rotate([0,0,(-360/p2number/p2needles)+(i*-360/p2number)]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
}
}
} //end for
for(i=[0:(p2number/p3number)-1]){
rotate([0,0,(-360/p2number/p2needles*(p2needles-1))+(i*-360/p2number)]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
}
}
}//end for
//end middle holes
}
}
} //end module
CKpM.scad "mountain"
include <CKvars.scad>;
CKpM(); //mountain
module CKpM(){
pMH=pMgrooveC3+pMwallHextra;
difference(){
translate([-(p2OD+2),0,0])
cube([(p2OD+2)*2,((p2OD+2)/2)+pMwallT+pMgroove,pMH]);
#cylinder($fn=180,d=p2OD+2, h=pMH);
} //end main difference
} //end module
See Also
- Open Source Textile Construction Set
- Open Source Circular Knitting Machine
- CircularKnitic Parametric