OSE CircularKnitic v18.03: Difference between revisions
Jump to navigation
Jump to search
(→To Do) |
|||
| Line 828: | Line 828: | ||
===CKp7.scad "Z bearing holder"=== | ===CKp7.scad "Z bearing holder"=== | ||
*should a horizontal bearing be added to help keep plates aligned? | |||
<nowiki> | <nowiki> | ||
Revision as of 00:14, 12 June 2018
Overview
- OSE's Fork of CircularKnitic, the open source circulate knitting machine
- Code available on GitHub https://github.com/OpenSourceEcology/circular_knitic
Goals
Needle Accomidation
- Long tails
- Bent back tails
- Test 3D printed needles
Fabric Spool
- Apply constant tension on fabric
- Roll onto spool for easy handling and storage
Part Code
CKvars.scad
- Variables to be defined for all aspects of the specific machine to be built
- These variables should be set the same for each part that is rendered
- need to define nominal distance between top of needle to top of CKp4.
- need to increase number of p3 and p4 parts.
- calculate printer footprint for each part.
////MAIN SETTINGS////
//select needle size file that will be used
include <CKneedleVars-KH260.scad>;
//number of "p2" parts around circle
p2number=36;
//number of needles mounted on each "p2" part
p2needles=10;
//number of "p3" parts around circle
p3number=18;
//number of "p4" parts around circle
p4number=18;
//distance from the inside face of one needle to the next
needle2needle=8.414; //default=14.35615
//calculated diameter from inside edge of needles
p2needlegrooveID=((needle2needle*p2number*p2needles)/PI);
////MATERIALS////
upper_surfaceH=5; //thickness of upper rotating plate
bottom_surface_motor_gearsH=6; //thickness of geared rotating plate
table_surface=5; //thickness of plate of main table
////PART SETTINGS////
//plate
pPspace1=12; //? space from main table top to first plate
pPplate1=bottom_surface_motor_gearsH; //thickness of geared plated
pPspace2=12; //space between geared plate and mountain plate
pPplate2=upper_surfaceH;
//"connector0912" connects upper_surface plate to bottom_surface geared plate
connector0912H=12;
connector0912L=25;
connector0912W=8;
connector0912HoleOD=3; //hole diameter
connector0912HoleC2C=17; //center of hole to center of other hole
//p5 BearringSmall1312_x_4.stl
bearingholderSmallB2C=5.5; //from base of bearing holder to center of bearing
bearingholderSmallBOD=10; //Outside Diameter of bearing
bearingholderSmallBID=4.9; //Inside Diameter of bore hole of bearing
bearingholderSmallBW=4; //Width of bearing
//BearringZ
bearingholderZBOD=10; //Outside Diameter of bearing
bearingholderZBID=4.9; //Inside Diameter of bore hole of bearing
bearingholderZBW=4; //Width of bearing
bearingholderZB2C=(bearingholderZBOD/2)+upper_surfaceH+connector0912H+bottom_surface_motor_gearsH+bearingholderSmallB2C+(bearingholderSmallBOD/2); //from base of bearing holder to center of bearing
//p2
needleWidthslop=0.4; //exta thickness
needleWidth=nX+needleWidthslop;
p2needlegroovefromID=2.0;
p2ID=p2needlegrooveID-(p2needlegroovefromID*2);
p2needlegrooveDepthslop=0.4; //exta thickness
p2needlegrooveDepth=nY+p2needlegrooveDepthslop;
//p2H calculated below;
p2W=p2needlegroovefromID+p2needlegrooveDepth;
p2OD=p2ID+(p2W*2);
//p2holeH calculated below
p2holeD=2;
p2holeCSD=4.01726;
p2holeCSL=1.5;
p2clear=0.5; //distance above top of p4 from flipper in down position
//p3
p3wiggle=0.1;
p3baseH=3;
p3wallW=(nH-nY)/2; //half of needle butt
p3baseholeD=3;
p3baseholeScrewHeadD=5.68;
p3baseholefromODID=p3baseholeScrewHeadD/2;
p3baseholenumber=4;
p3ridgeW1=3;
p3ridgeW2=5;
p3ridgeH=5;
p3wallholefromtop=5;
p3wallchamfW=2;
p3wallchamfH=3;
//p3wallH in calculations below
//p3grooveH1 in calculations below
//p3grooveH2 in calculations below
p3grooveWslop=0.8; //extra Width in needle groove
p3grooveW=nX+p3grooveWslop;
p3clear=5; //distance from top of p3 to needle flipper in down position
p3baseID=p2ID-(p3wiggle*2)-(p3ridgeW2*2)-(p3baseholeScrewHeadD*2);
p3baseOD=p2OD+(p3wiggle*2)+(p3wallW*2)+(p3wallchamfW*2)+(p3baseholeScrewHeadD*2);
centerlineD=p2ID+(p2W+(p3wiggle*2));
p3wallOD=centerlineD+(p3wallW*2)+((p2W+(p3wiggle*2)/2));
p3wallID=centerlineD+((p2W+(p3wiggle*2)/2));
//p4
p4rampH=14.57;
p4rampfromID=2.5;
p4rampoverhangH=4;
p4rampfromOD=1.34;
p4rampC1=10;
p4rampC2=40;
p4rampC2transX=10;
p4rampC2transZ=3.82;
p4baseH=11;
p4basegapH=8;
p4baseW=11.2;
p4basegapW=p2W+0.2; //5.09
p4clawW=min((needle2needle-(nX*2)),9);
p4holesnumber=3;
p4holeH=5;
p4rampW=max(min(p4clawW-3,4),2.5);
echo("rampW", p4rampW);
//p5 small bearing holder
p5wingW=7;
p5wingL=27;
p5wingH=3;
p5bodyW=16;
p5bodyL=25;
p5bodyH=9.5;
p5wiggleL=0.4;
p5wiggleW=0.25;
p5bearingfromwall=4.25;
p5mountholeOD=3;
p5mounthole2front=7;
p5mounthole2back=5;
//p6 big bearing holder
p6wingW=30;
p6wingL=25;
p6wingH=3;
p6bodyW=16;
p6bodyL=25;
p6bodyH=9.5;
p6wiggleL=0.4;
p6wiggleW=0.6;
p6bearingfromwall=4.25;
p6mountholeOD=3;
p6mounthole2front=8;
p6mounthole2side=3;
//p7 Z bearing holder
p7baseW=16;
p7baseL=23;
p7baseH=4;
p7wallW=3;
p7braceW=3;
p7mountH=8;
p7mountL=13;
p7mountholeOD=3;
p7mounthole2edge=3.5;
p7bearingfromfront=3;
p7wiggleL=0.4;
p7wiggleW=0.25;
//p8 plate connector
p8baseW=8;
p8baseL=25;
p8holeD=3;
p8holeend2C=4;
//p9 outer connector
p9thickness=4;
p9H=10;
//mountain
pMwallT=7.5; //min thickness from groove to back wall
pMgroove=nH-nY-p3wallW+1; //depth of groove
pMgrooveAngle=45;
pMgrooveC1=pPspace2; //top of groove at position 1 "entrance"
pMgrooveC2=nC+2; //top of groove at position 2 "push down"
pMgrooveC3=44.25; //top of groove at position 3 "top center"
pMgrooveSlop=2;
pMwallHextra=5.75; //extra height above groove at heighest point
//c2 geared plate
c2t2t=6.858;
c2width=50;
c2gap=2;
c2OD=(c2width*2)+(c2gap*2)+p2OD+(p3wiggle*2)+(p3wallW*2);
c2ID=(c2gap*2)+p2OD+(p3wiggle*2)+(p3wallW*2);
c2teeth=((c2OD*PI)/c2t2t);
c2dipitch=c2teeth/(c2OD*PI);
//c1
c1H=table_surface;
c1width=c2width+91.36;
c1OD=c2OD+(c1width-c2width);
//calculated settings
centerlineD=p2ID+(p2W+(p3wiggle*2));
p3grooveH1=bottom_surface_motor_gearsH+bearingholderSmallB2C+(bearingholderSmallBOD/2)+(pMgrooveSlop/2);
p3grooveH2=p3grooveH1+pMgrooveC3+(pMgrooveSlop/2);
p4baseOD=centerlineD+p4baseW;
p4baseID=centerlineD-p4baseW;
p4basegapOD=centerlineD+p4basegapW;
p4basegapID=centerlineD-p4basegapW;
//firstcenter=(((((360/p2number/p2needles/2)/360*(p2OD*PI))-(needleWidth/2))/((360/p2number/p2needles/2)/360*(p2OD*PI)))*(360/p2number/p2needles/2))/2;
//doesnt work on narrow needle arrangement, moved to second gap
p2H=bottom_surface_motor_gearsH+bearingholderSmallB2C+(bearingholderSmallBOD/2)+pMgrooveC3+nA-nB-nC-nF-p3baseH-(p4rampH+p4baseH-p4basegapH)-p2clear;;
p3wallH=bottom_surface_motor_gearsH+bearingholderSmallB2C+(bearingholderSmallBOD/2)+pMgrooveC2+nA-nB-nC-nF-p3clear;
p2holeH=p3grooveH2+((p3wallH-p3grooveH2)/2);
////SETTINGS OUTPUT ECHOS///
echo("Total Needles:", p2number*p2needles);
echo("Millimeters Between Needles:", PI*p2needlegrooveID/(p2number*p2needles));
echo("OD of p3:", p3baseOD);
echo("OD of c1:", c2OD+(c1width-c2width));
Needles
CKneedleVars-KH260.scad
- purchased here: http://shop.sckmcl.com.hk/product_info.php?products_id=136
//NEEDLE for Brother KH260 //measurements by dorkmo nX=1.4; //typical thickness from side to side nY=2.44; //typical thickness from front to back nA=157.9; //total length of needle nB=53; //distance from bottom of needle to bottom of bent tab. nC=4.82; //thickness of bent tab. top to bottom. nD=5.48; //hook front to back nE=4.10; //from top of loop to bottom of hook nF=22.0; //from top of loop to bottom of flipper in down position nG=1.10; //minimum thickness of hook. front to back. nH=17.03; //max distance from front to back nT=0; //0=straight tail 1=bent tail aka folded back. Y of tail = C if T=1.
CKneedleVars-SK120.scad
- difficult to find these exact needles for sale
//NEEDLE for SK120 //measured by original CircularKnitic team nX=1.4; //typical thickness from side to side nY=2.44; //typical thickness from front to back nA=97.73; //total length of needle nB=7.72; //distance from bottom of needle to bottom of bent tab. nC=4.92; //thickness of bent tab. top to bottom. nD=5.09; //hook front to back nE=4.62; //from top top loop to bottom of hook nF=19.94; //top to bottom of flipper in down position nG=1.04; //minimum thickness of hook. front to back. nH=16.4; //max distance from front to back nT=0; //0=straight tail 1=bent tail aka folded back. Y of tail = C of T=1.
3D Prints
- Parts to be printed on the 3D printer
CKp2.scad "inner"
include <CKvars.scad>;
CKp2();
module CKp2(){
rez=p2number*p2needles*2;
$fn=rez; //defines resolution of circles.
translate([p2OD/2,0,0]){
difference(){
cylinder(h=p2H,d=p2OD);
cylinder(h=p2H,d=p2ID);
translate([-p2OD/2,-p2OD/2,0]){
cube([p2OD,p2OD/2,p2H]);
}
rotate([0,0,-360/p2number]){
translate([-p2OD/2,0,0])
cube([p2OD,p2OD/2,p2H]);
}
for(i=[1:p2needles]){
rotate([0,0,(360/p2number/p2needles/2)-(360/p2number/p2needles*i)]){
translate([-p2OD/2-0.2,-needleWidth/2,0])
cube([p2needlegrooveDepth+0.2,needleWidth,p2H]);
}
}
rotate([0,0,-360/p2number/p2needles]){
translate([-p2OD/2-0.2,0,p2holeH])
rotate([0,90,0]){
union(){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
translate([0,0,((p2OD-p2ID)/2)-p2holeCSL]){
cylinder(h=p2holeCSL+2, d=p2holeCSD);
}
} //end union
}
}
rotate([0,0,-360/p2number/p2needles*(p2needles-1)]){
translate([-p2OD/2-0.2,0,p2holeH])
rotate([0,90,0]){
union(){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
translate([0,0,((p2OD-p2ID)/2)-p2holeCSL]){
cylinder(h=p2holeCSL+2, d=p2holeCSD);
}
} //end union
}
}
echo(((((360/p2number/p2needles/2)/360*(p2OD*PI))-(needleWidth/2))/((360/p2number/p2needles/2)/360*(p2OD*PI)))*(360/p2number/p2needles/2));
//firstcenter=(((((360/p2number/p2needles/2)/360*(p2OD*PI))-(needleWidth/2))/((360/p2number/p2needles/2)/360*(p2OD*PI)))*(360/p2number/p2needles/2))/2; not using
// 2nd hole
rotate([0,0,-(360/p2number/p2needles)*2]){
translate([-p2OD/2-0.2,0,p2holeH])
rotate([0,90,0]){
union(){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
translate([0,0,((p2OD-p2ID)/2)-p2holeCSL]){
cylinder(h=p2holeCSL+2, d=p2holeCSD);
}
} //end union
}
}
//3rd hole
rotate([0,0,-360/p2number+((360/p2number/p2needles)*2)]){
translate([-p2OD/2-0.2,0,p2holeH])
rotate([0,90,0]){
union(){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
translate([0,0,((p2OD-p2ID)/2)-p2holeCSL]){
cylinder(h=p2holeCSL+2, d=p2holeCSD);
}
} //end union
}
} //end rotate
//end hole
//p4 mount holes
// 1st p4 mount hole
rotate([0,0,-(360/p2number/p2needles)*2]){
translate([-p2OD/2-0.2,0,p2H-(p4basegapH-p4holeH)])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
}
}
//2nd p4 mount hole
// 2nd hole
rotate([0,0,-(360/p2number/p2needles)*3]){
translate([-p2OD/2-0.2,0,p2H-(p4basegapH-p4holeH)])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD);
}
}
//end p4 mount holes
}
}
} //end module
CKp3.scad "outer"
- Added holes in base for long tails
- does this need to be bigger to allow for some slop?
- what to do if needle has bent back tail?
include <CKvars.scad>;
CKp3();
module CKp3(){
rez=p2number*p2needles*2;
//p2number*p2needles*2
//p2number*2*2;
$fn=rez; //defines resolution of circles.
centerlineD=p2ID+(p2W+(p3wiggle*2));
echo(centerlineD);
translate([p3baseOD/2,0,0]){
difference(){
union(){
cylinder(h=p3baseH,d=p3baseOD);
difference(){
cylinder(h=p3ridgeH+p3baseH,d=centerlineD-((p2W+(p3wiggle*2)/2)));
translate([0,0,p3baseH])
cylinder(h=p3ridgeH,d1=centerlineD-(p3ridgeW2*2)-((p2W+(p3wiggle*2)/2)),d2=centerlineD-(p3ridgeW1*2)-((p2W+(p3wiggle*2)/2)));
}
difference(){
translate([0,0,p3baseH])
cylinder(h=p3wallchamfH,d1=centerlineD+((p3wallchamfW+p3wallW)*2)+((p2W+(p3wiggle*2)/2)),d2=centerlineD+(p3wallW*2)+((p2W+(p3wiggle*2)/2)));
cylinder(h=p3wallchamfH+p3baseH,d=centerlineD+((p2W+(p3wiggle*2)/2)));
}
difference(){
cylinder(h=p3wallH,d=centerlineD+(p3wallW*2)+((p2W+(p3wiggle*2)/2)));
cylinder(h=p3wallH,d=centerlineD+((p2W+(p3wiggle*2)/2)));
}
} //end main union
cylinder(h=p3wallH,d=p3baseID);
translate([-p3baseOD/2,-p3baseOD/2,0]){
cube([p3baseOD,p3baseOD/2,p3wallH]);
}
rotate([0,0,-360/p3number]){
translate([-p3baseOD/2,0,0])
cube([p3baseOD,p3baseOD/2,p3wallH]);
}
//slots
for(i=[1:p2needles*(p2number/p3number)]){
rotate([0,0,(360/p2number/p2needles/2)-(360/p2number/p2needles*i)]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,-p3grooveW/2,p3grooveH1])
cube([p3wallW+0.2,p3grooveW,p3grooveH2-p3grooveH1]);
}
}
//base needle holes
for(i=[1:p2needles*(p2number/p3number)]){
rotate([0,0,(360/p2number/p2needles/2)-(360/p2number/p2needles*i)]){
translate([-p2OD/2,-needleWidth/2,-0.01])
cube([p2needlegrooveDepth,needleWidth,p3wallH+0.02]);
}
}
//base mounting holes
for(i=[1:p3baseholenumber]){
rotate([0,0,(((360/p3number/p3baseholenumber))/2)-((360/p3number/p3baseholenumber)*i)]){
translate([-(p3baseID/2)-p3baseholefromODID,0,0])
cylinder(h=p3baseH,d=p3baseholeD,$fn=18);
}
}
for(i=[1:p3baseholenumber]){
rotate([0,0,(((360/p3number/p3baseholenumber))/2)-((360/p3number/p3baseholenumber)*i)]){
translate([-(p3baseOD/2)+p3baseholefromODID,0,0])
cylinder(h=p3baseH,d=p3baseholeD,$fn=18);
}
}
//first and last holes
rotate([0,0,-(360/p2number/p2needles)*2]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD, $fn=18);
}
}
rotate([0,0,-(360/(p3number))+((360/p2number/p2needles)*2)]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
#cylinder(h=p2OD-p2ID+0.2, d=p2holeD, $fn=18);
}
}
//middle holes
for(i=[0:(p2number/p3number)-1]){
rotate([0,0,(-360/p2number/p2needles)+(i*-360/p2number)]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD,$fn=18);
}
}
} //end for
for(i=[0:(p2number/p3number)-1]){
rotate([0,0,(-360/p2number/p2needles*(p2needles-1))+(i*-360/p2number)]){
translate([((-centerlineD-(p3wallW*2)-((p2W+(p3wiggle*2)/2)))/2)-0.1,0,p2holeH+p3baseH])
rotate([0,90,0]){
cylinder(h=p2OD-p2ID+0.2, d=p2holeD, $fn=18);
}
}
}//end for
//end middle holes
}
}
} //end module
CKp4.scad "yard holder"
include <CKvars.scad>;
CKp4();
module CKp4(){
rez=p2number*p2needles*2;
$fn=rez; //defines resolution of circles.
translate([p4baseOD/2,0,0]){
difference(){
union(){
cylinder(h=p4baseH,d=p4baseOD-(p4basegapW*2)-((p4baseW-p4basegapW)/2*2));
//ramps
for(i=[1:p2needles*(p2number/p4number)]){
rotate([0,0,(360/p2number/p2needles)-(360/p2number/p2needles*i)-(((360/p2number/p2needles))/2)]){
difference(){
union(){
translate([-p4baseOD/2+p4rampfromOD,p4rampW/2,p4rampH+p4baseH-(p4rampC1/2)])
rotate([90,0,0])
cylinder(h=p4rampW,d=p4rampC1);
intersection(){
translate([-10,0,3.82])
translate([-p4baseOD/2+p4rampfromOD,p4rampW/2,p4rampH+p4baseH-(p4rampC2/2)])
rotate([90,0,0])
cylinder(h=p4rampW,d=p4rampC2);
translate([-7,0,-2.86/2])
translate([-p4baseOD/2+p4rampfromOD,p4rampW/2,p4rampH+p4baseH-(p4rampC2/2)])
cube([p4rampC2,p4rampC2,p4rampC2],center=true);
}
}//end union
translate([-p4rampC2/2,0,0])
translate([-p4baseOD/2+p4rampfromOD,p4rampW/2,p4rampH+p4baseH-(p4rampC2/2)])
cube([p4rampC2,p4rampC2,p4rampC2],center=true);
translate([0,0,0])
translate([-p4baseOD/2+p4rampfromOD,p4rampW/2,p4baseH-(p4rampC2/2)-0.1])
cube([p4rampC2,p4rampC2,p4rampC2],center=true);
translate([0,-p4clawW/2,0])
translate([-(p4baseID/2)-p4rampfromID,0,p4baseH])
cube([(p4baseID/2)+p4rampfromID,p4clawW,p4rampoverhangH]);
translate([-7,0,0])
translate([-p4baseOD/2+p4rampfromOD,(p4rampW/2)+(p4rampC2/2)-0.01,p4rampH+p4baseH-(p4rampC2/2)])
cube([p4rampC2,p4rampC2,p4rampC2],center=true);
translate([-7,0,0])
translate([-p4baseOD/2+p4rampfromOD,-(p4rampW/2)-(p4rampC2/2)+0.01,p4rampH+p4baseH-(p4rampC2/2)])
cube([p4rampC2,p4rampC2,p4rampC2],center=true);
}//end ramps difference
} //end for rotate
}//end for
//claws
for(i=[1:p2needles*(p2number/p4number)]){
rotate([0,0,(360/p2number/p2needles)-(360/p2number/p2needles*i)-(((360/p2number/p2needles))/2)]){
translate([-p4baseOD/2,-p4clawW/2,0])
cube([(p4baseOD-p4baseID)/2,p4clawW,p4baseH]);
}
}//end for
} //end main union
cylinder(h=p4baseH,d=p4baseID);
translate([-p4baseOD/2,-p4baseOD/2,0]){
cube([p4baseOD,p4baseOD/2,p4baseH]);
}
rotate([0,0,-360/p4number]){
translate([-p4baseOD/2,0,0])
cube([p4baseOD,p4baseOD/2,p4baseH]);
}
difference(){
cylinder(h=p4basegapH,d=p4basegapOD);
cylinder(h=p4basegapH,d=p4basegapID);
}
//holes
//middle holes
for(i=[0:(p2number/p4number)-1]){
rotate([0,0,(-360/p2number/p2needles*0.5)+(i*-360/p2number)]){
translate([-p4baseOD/2-0.2,0,p4holeH])
rotate([0,90,0]){
union(){
cylinder(h=p4baseOD-p4baseID+0.2, d=p2holeD);
translate([0,0,((p4baseOD-p4baseID)/2)-p2holeCSL]){
cylinder(h=p2holeCSL+2, d=p2holeCSD);
} //end translate
} //end union
} //end rotate
} // end rotate
} //end for
//second set
for(i=[0:(p2number/p3number)-1]){
rotate([0,0,-(360/p2number/p2needles*0.5)+(360/p2number/p2needles)+(i*-360/p2number)+(-360/p2number)]){
translate([-p4baseOD/2-0.2,0,p4holeH])
rotate([0,90,0]){
union(){
cylinder(h=p4baseOD-p4baseID+0.2, d=p2holeD);
translate([0,0,((p4baseOD-p4baseID)/2)-p2holeCSL]){
cylinder(h=p2holeCSL+2, d=p2holeCSD);
} //end translate
} //end union
} //end rotate
} // end rotate
} //end for
//end middle holes
} //end main difference
} //end main translate
} //end module
CKp5.scad "small bearing holder"
include <CKvars.scad>;
CKp5(); //small bearing holder
module CKp5(){
translate([-(p5wingW+p5bodyW+p5wingW)/2,0,0]){
//wing left
difference(){
cube([p5wingW,p5wingL,p5wingH]);
//wing right holes
translate([p5wingW/2,p5mounthole2front,0])
cylinder(d=p5mountholeOD,h=p5wingH+0.1,$fn=36);
translate([p5wingW/2,p5wingL-p5mounthole2back,0])
cylinder(d=p5mountholeOD,h=p5wingH+0.1,$fn=36);
} //end wing left difference
//body
translate([p5wingW,0,0]){
difference(){
cube([p5bodyW,p5bodyL,p5bodyH]);
// bearing cutout 1
translate([((p5bodyW)/2)-((bearingholderZBOD+p5wiggleW)/2),p5bearingfromwall,0])
cube([bearingholderZBOD+p5wiggleW,bearingholderSmallBW+p5wiggleL,p5bodyH+0.1]);
// bearing cutout 2
translate([((p5bodyW)/2)-((bearingholderZBOD+p5wiggleW)/2),p5bodyL-p5bearingfromwall-(bearingholderSmallBW+p5wiggleL),0])
cube([bearingholderZBOD+p5wiggleW,bearingholderSmallBW+p5wiggleL,p5bodyH+0.1]);
// bore hole cutout
translate([(p5bodyW)/2,-0.1,bearingholderSmallB2C])
rotate([270,0,0])
cylinder(d=bearingholderSmallBID,h=p5bodyL+0.2,$fn=36);
} //end body difference
} //end body translate
//wing right
translate([p5wingW+p5bodyW,0,0]){
difference(){
cube([p5wingW,p5wingL,p5wingH]);
//wing right holes
translate([p5wingW/2,p5mounthole2front,0])
cylinder(d=p5mountholeOD,h=p5wingH+0.1,$fn=36);
translate([p5wingW/2,p5wingL-p5mounthole2back,0])
cylinder(d=p5mountholeOD,h=p5wingH+0.1,$fn=36);
} //end wing right difference
} //end wing right translate
} //end main translate
} //end main module
CKp6.scad "big bearing holder"
include <CKvars.scad>;
CKp6(); //small bearing holder
module CKp6(){
translate([-(p6wingW+p6bodyW+p6wingW)/2,0,0]){
//wing left
difference(){
cube([p6wingW,p6wingL,p6wingH]);
//wing right holes
translate([p6mounthole2side,p6mounthole2front,0])
cylinder(d=p6mountholeOD,h=p6wingH+0.1,$fn=36);
} //end wing left difference
//body
translate([p6wingW,0,0]){
difference(){
cube([p6bodyW,p6bodyL,p6bodyH]);
// bearing cutout 1
translate([((p6bodyW)/2)-((bearingholderSmallBOD+p6wiggleW)/2),p6bearingfromwall,0])
cube([bearingholderSmallBOD+p6wiggleW,bearingholderSmallBW+p6wiggleL,p6bodyH+0.1]);
// bearing cutout 2
translate([((p6bodyW)/2)-((bearingholderSmallBOD+p6wiggleW)/2),p6bodyL-p6bearingfromwall-(bearingholderSmallBW+p6wiggleL),0])
cube([bearingholderSmallBOD+p6wiggleW,bearingholderSmallBW+p6wiggleL,p6bodyH+0.1]);
// bore hole cutout
translate([(p6bodyW)/2,-0.1,bearingholderSmallB2C])
rotate([270,0,0])
cylinder(d=bearingholderSmallBID,h=p6bodyL+0.2,$fn=36);
} //end body difference
} //end body translate
//wing right
translate([p6wingW+p6bodyW,0,0]){
difference(){
cube([p6wingW,p6wingL,p6wingH]);
//wing right holes
translate([p6wingW-p6mounthole2side,p6mounthole2front,0])
cylinder(d=p6mountholeOD,h=p6wingH+0.1,$fn=36);
} //end wing right difference
} //end wing right translate
} //end main translate
} //end main module
CKp7.scad "Z bearing holder"
- should a horizontal bearing be added to help keep plates aligned?
include <CKvars.scad>;
CKp7(); //small bearing holder
module CKp7(){
translate([-p7baseW/2,0,0]){
difference(){
union(){
cube([p7baseW,p7baseL,p7baseH]);
translate([0,(p7baseL/2)-(p7wallW/2),0])
cube([p7baseW,p7wallW,bearingholderZB2C+(p7mountH/2)]);
translate([0,(p7baseL/2)+(p7wallW/2)-p7mountL,bearingholderZB2C-(p7mountH/2)])
cube([p7baseW,p7mountL,p7mountH]);
//diagnal brace
translate([(p7baseW/2)-(p7braceW/2),((p7baseL-p7wallW)/2)+p7wallW,p7baseH]){
difference(){
cube([p7braceW,(p7baseL-p7wallW)/2,bearingholderZB2C*2/3]);
translate([0,(p7baseL-p7wallW)/2,0])
rotate([1/tan(((bearingholderZB2C*2/3))/((p7baseL-p7wallW)/2)),0,0])
cube([p7braceW,bearingholderZB2C*2,bearingholderZB2C*2]);
} //end brace translate
} //end brace difference
} //end main union
//bore hole
translate([(p7baseW)/2,((p7baseL/2)+(p7wallW/2)-p7mountL)-0.1,bearingholderZB2C])
rotate([270,0,0])
cylinder(d=bearingholderZBID,h=p7mountL+0.2,$fn=36);
//bearing cutout
translate([((p7baseW)/2)-((bearingholderZBOD+p7wiggleW)/2),p7bearingfromfront,bearingholderZB2C-(p7mountH/2)-0.1])
cube([bearingholderZBOD+p7wiggleW,bearingholderZBW+p7wiggleL,p7mountH+0.2]);
// hole 1
translate([p7mounthole2edge,p7mounthole2edge,0])
cylinder(d=p7mountholeOD,h=p7baseH+0.1,$fn=36);
// hole 2
translate([p7baseW-p7mounthole2edge,p7mounthole2edge,0])
cylinder(d=p7mountholeOD,h=p7baseH+0.1,$fn=36);
// hole 3
translate([p7mounthole2edge,p7baseL-p7mounthole2edge,0])
cylinder(d=p7mountholeOD,h=p7baseH+0.1,$fn=36);
// hole 4
translate([p7baseW-p7mounthole2edge,p7baseL-p7mounthole2edge,0])
cylinder(d=p7mountholeOD,h=p7baseH+0.1,$fn=36);
} //end main difference
} //end main translate
} //end main module
CKp8.scad "plate connector"
include <CKvars.scad>;
CKp8(); //small bearing holder
module CKp8(){
translate([-p8baseW/2,0,0]){
difference(){
cube([p8baseW,p8baseL,pPspace2]);
translate([p8baseW/2,p8holeend2C,-0.1])
cylinder(d=p8holeD,h=pPspace2+0.2,$fn=36);
translate([p8baseW/2,p8baseL-p8holeend2C,-0.1])
cylinder(d=p8holeD,h=pPspace2+0.2,$fn=36);
} //end main difference
} //end translate
} //end main module
CKp9.scad "outer connector"
include <CKvars.scad>;
CKp9(); //small bearing holder
module CKp9(){
rez=p2number*p2needles*2;
$fn=rez;
translate([-p3wallOD/2,0,0]){
difference(){
cylinder(h=p9H,d=p3wallOD+p9thickness);
cylinder(h=p9H,d=p3wallOD);
//first and last holes
rotate([0,0,-(360/p2number/p2needles)*2]){
translate([(p3wallOD/2)-0.1,0,p9H/2])
rotate([0,90,0]){
#cylinder(h=p9thickness+0.2, d=p2holeD, $fn=18);
}
}
rotate([0,0,((360/p2number/p2needles)*2)]){
translate([(p3wallOD/2)-0.1,0,p9H/2])
rotate([0,90,0]){
cylinder(h=p9thickness+0.2, d=p2holeD, $fn=18);
}
}
//end first and last holes
//outer holes
rotate([0,0,(-360/p2number/p2needles)]){
translate([(p3wallOD/2)-0.1,0,p9H/2])
rotate([0,90,0]){
cylinder(h=p9thickness+0.2, d=p2holeD, $fn=18);
}
}
rotate([0,0,(360/p2number/p2needles)]){
translate([(p3wallOD/2)-0.1,0,p9H/2])
rotate([0,90,0]){
cylinder(h=p9thickness+0.2, d=p2holeD, $fn=18);
}
}
//end outer holes
// cut off ends
rotate([0,0,-((-360/p2number/p2needles)+(1.4*-360/p2number/p2needles))]){
cube([(p3wallOD+p9thickness)*2,(p3wallOD+p9thickness)*2,(p3wallOD+p9thickness)*2]);
}
rotate([0,0,((-360/p2number/p2needles)+(1.4*-360/p2number/p2needles))]){
translate([0,-((p3wallOD+p9thickness)*2),0])
cube([(p3wallOD+p9thickness)*2,(p3wallOD+p9thickness)*2,(p3wallOD+p9thickness)*2]);
}
translate([-((p3wallOD+p9thickness)*2),-((p3wallOD+p9thickness)*2)/2,0])
#cube([(p3wallOD+p9thickness)*2,(p3wallOD+p9thickness)*2,(p3wallOD+p9thickness)*2]);
} //end main difference
} //end translate
} //end main module
CKpM.scad "mountain"
- need to test with different size needle and spaces between plates
- takes a long time to render, have to be patient
- need to up the resolution of circles at large diameter machine
- need to set a minimum thickness of the mountain.
- mounting brackets not rendering correctly on large diameter machine
include <CKvars.scad>;
CKpM(); //mountain
CKpMgrooveturnR=15; //radius of upper curved path in groove
CKpMgrooveturnR2=8; //radius of lower curved path in groove
CKpMgrooveD=nC+pMgrooveSlop; //diamter of groove cut
CKpMID=p2OD+2; //inside diameter of main wall
CKpMgrooveOD=pMgroove+(CKpMID/2); //center to OD of groove
CKpMp7X=5; //half of length of plateu of groove. preferably whole number
CKpMp3X=2.5; //length of flat area of section 3
CKpMcutRez=2; //cuts per degree
CKpMcutDeg=(((CKpMp7X/2)*360/(PI*CKpMID))/CKpMp7X); //degrees per unit diameter
CKpMcutcylRez=36; //number of sides on groove cutting clylinder
CKpMcutA=45; //angle of cut path
//calc'd
mi=(CKpMID*PI)/360; //degrees in mm at CKpMID
echo("mi=");
echo(mi);
CKpMd7=round((CKpMp7X)*360/(PI*CKpMID)*10)/10; //degrees around ID
echo(CKpMd7);
CKpMd6=round((cos(CKpMcutA)*CKpMgrooveturnR)*360/(PI*CKpMID)*10)/10;
echo(CKpMd6);
CKpMp6Y=0;
CKpMd5=round((tan(CKpMcutA)*(((pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin((((CKpMd7+CKpMd6)-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR))-((CKpMgrooveD/2)+((sin(CKpMcutA)*CKpMgrooveturnR2)*360/(PI*CKpMID))))))*360/(PI*CKpMID)*10)/10;
// not good code CKpMd5=round((cos(CKpMcutA)*(pMgrooveC3+pMwallHextra+(CKpMgrooveD/2)))*360/(PI*CKpMID)*10)/10;
//height of center of circle at top of 5 //pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin((((CKpMd7+CKpMd6)-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)
//height of center of circle at bottom of 5
//CKpMgrooveD+((sin(CKpMcutA)*CKpMgrooveturnR2)*360/(PI*CKpMID))
//total height of 5 //((pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin((((CKpMd7+CKpMd6)-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR))-(CKpMgrooveD+((sin(CKpMcutA)*CKpMgrooveturnR2)*360/(PI*CKpMID))))
echo(CKpMd5);
//center to center degrees in section 4
CKpMd4=round((cos(CKpMcutA)*CKpMgrooveturnR2)*360/(PI*CKpMID)*10)/10;
//old bad code CKpMd4=(cos(CKpMcutA)*((pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((((CKpMd7+(CKpMd6))-(0.1))-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR))-((cos(CKpMcutA)*CKpMgrooveturnR))));
echo(CKpMd4);
CKpMd3=round((CKpMp3X)*360/(PI*CKpMID)*10)/10; //degrees around ID
echo(CKpMd3);
CKpMd2=round((cos(CKpMcutA)*CKpMgrooveturnR2)*360/(PI*CKpMID)*10)/10;
echo(CKpMd2);
//height of center of circle at top of 2
//CKpMgrooveD+((sin(CKpMcutA)*CKpMgrooveturnR2)*360/(PI*CKpMID))
//need to fix below
CKpMd1=round(((cos(CKpMcutA)*((pMgrooveC1-(((((CKpMgrooveD/2)-(CKpMgrooveturnR2*cos(asin((((CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2)-(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3))*(PI*CKpMID)/360)/CKpMgrooveturnR2))-CKpMgrooveturnR2)))))-(sin(CKpMcutA)*(CKpMgrooveD/2)))*(1/sin(CKpMcutA)))))*360/(PI*CKpMID)*10)/10;
echo("degrees 1:");
echo(CKpMd1);
CKpMd0=(cos(CKpMcutA)*(CKpMgrooveD/2))*360/(PI*CKpMID);
pMH=pMgrooveC3+pMwallHextra;
pMbwOD=((p2OD+2)/2)+pMwallT+pMgroove;
echo(pMbwOD);
module CKpM(){
//test cube
// translate([-71.4,120,0])
// cube([pMgrooveC1,pMgrooveC1,pMgrooveC1]);
union(){
difference(){
translate([-(p2OD+2),0,0])
cube([(p2OD+2)*2,((p2OD+2)/2)+pMwallT+pMgroove,pMH]);
cylinder($fn=180,d=CKpMID, h=pMH);
//cut main end
//need to calc exactly so height of path entrance matches bottom of top plate
rotate([0,0,(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2+CKpMd1-CKpMd0)])
mirror([1,0,0])
cube([CKpMID*4,CKpMID*4,pMH]);
mirror([1,0,0])
rotate([0,0,(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2+CKpMd1-CKpMd0)])
mirror([1,0,0])
cube([CKpMID*4,CKpMID*4,pMH]);
//left needle path cut
needlepathLEFT();
//right needle path cut
mirror([1,0,0])
needlepathLEFT();
} //end main difference
pMsidetab();
mirror([1,0,0])
pMsidetab();
} //end main union
} //end main module
module pMsidetab(){
translate([0,0,pPspace2+pPplate2])
difference(){
rotate([0,0,-(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2+CKpMd1-CKpMd0)])
difference(){
union(){
cube([12.5,(pMbwOD*2),4]);
translate([0,0,4])
difference(){
cube([4,(pMbwOD*2),4]);
translate([4,0,0])
rotate([0,-45,0])
cube([8,(pMbwOD*2),8]);
}
}
translate([4+(8.5/2),(CKpMID/2)+13.5,0])
cylinder($fn=36,d=3,h=5);
translate([4+(8.5/2),(pMbwOD*(1/cos(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2+CKpMd1-CKpMd0)))-5.5,0])
cylinder($fn=36,d=3,h=5);
}
translate([0,-50,0])
cube([(CKpMID/2),((CKpMID/2)+3.5)*cos(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2+CKpMd1-CKpMd0)+50,(CKpMID/2)]);
translate([0,pMbwOD,0])
cube([(pMbwOD*2),(pMbwOD*2),(pMbwOD*2)]);
}
} //end sidetab module
module needlepathLEFT(){
//////////////////////
// needle path //
//////////////////////
//7
for(i=[(0.1):(0.2):CKpMd7-(0.1)]){
hull(){
//odd
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)])
rotate([270,0,i-(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//even
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 1
hull(){
//even
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//odd
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)])
rotate([270,0,i+(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 2
}//end fors
//6
for(i=[(CKpMd7)+(0.1):(0.2):(CKpMd7+(CKpMd6))-(0.1)]){
hull(){
//odd
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((i-CKpMd7-(0.1))*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)])
rotate([270,0,i-(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//even
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((i-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 1
hull(){
//even
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((i-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//odd
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((i-CKpMd7+(0.1))*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)])
rotate([270,0,i+(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 2
}//end fors
//5
for(i=[(CKpMd7+CKpMd6)+(0.1):(0.2):(CKpMd7+CKpMd6+CKpMd5+CKpMd4)-(0.1)]){
hull(){
//odd
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((((CKpMd7+(CKpMd6))-(0.0))-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)-((tan(CKpMcutA)*(i-0.1-(CKpMd7+CKpMd6))*mi))])
rotate([270,0,i-(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//even
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((((CKpMd7+(CKpMd6))-(0.0))-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)-((tan(CKpMcutA)*(i-(CKpMd7+CKpMd6-0.0))*mi))])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
} //end hull 1
hull(){
//even
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((((CKpMd7+(CKpMd6))-(0.0))-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)-((tan(CKpMcutA)*(i-(CKpMd7+CKpMd6-0.0))*mi))])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//odd
translate([0,0,pMgrooveC3-(CKpMgrooveD/2)+(CKpMgrooveturnR*cos(asin(((((CKpMd7+(CKpMd6))-(0.0))-CKpMd7)*(PI*CKpMID)/360)/CKpMgrooveturnR))-CKpMgrooveturnR)-((tan(CKpMcutA)*(i+0.1-(CKpMd7+CKpMd6))*mi))])
rotate([270,0,i+(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
} //end hull 2
} //end for
//4
for(i=[(CKpMd7+CKpMd6+CKpMd5)-(0.1):(0.2):(CKpMd7+CKpMd6+CKpMd5+CKpMd4)+(0.1)]){
translate([0,0,(CKpMgrooveD/2)-(CKpMgrooveturnR2*cos(asin(((i-(CKpMd7+CKpMd6+CKpMd5)-(0.0))*(PI*CKpMID)/360)/CKpMgrooveturnR2))-CKpMgrooveturnR2)])
rotate([270,0,((CKpMd7+CKpMd6+CKpMd5+CKpMd4)+(CKpMd7+CKpMd6+CKpMd5))-i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}
///3
for(i=[((CKpMd7+CKpMd6+CKpMd5+CKpMd4)+(0.1)):(0.2):((CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3)-(0.1))]){
hull(){
//even
translate([0,0,(CKpMgrooveD/2)])
rotate([270,0,i-(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//even
translate([0,0,(CKpMgrooveD/2)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 1
hull(){
//even
translate([0,0,(CKpMgrooveD/2)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//odd
translate([0,0,(CKpMgrooveD/2)])
rotate([270,0,i+(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 2
}//end fors
//2
for(i=[(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3)+(0.1):(0.2):(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2)-(0.1)]){
hull(){
//even
translate([0,0,(CKpMgrooveD/2)-(CKpMgrooveturnR2*cos(asin(((i-(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3)-(0.1))*(PI*CKpMID)/360)/CKpMgrooveturnR2))-CKpMgrooveturnR2)])
rotate([270,0,i-(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//even
translate([0,0,(CKpMgrooveD/2)-(CKpMgrooveturnR2*cos(asin(((i-(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3))*(PI*CKpMID)/360)/CKpMgrooveturnR2))-CKpMgrooveturnR2)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 1
hull(){
//even
translate([0,0,(CKpMgrooveD/2)-(CKpMgrooveturnR2*cos(asin(((i-(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3))*(PI*CKpMID)/360)/CKpMgrooveturnR2))-CKpMgrooveturnR2)])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
//odd
translate([0,0,(CKpMgrooveD/2)-(CKpMgrooveturnR2*cos(asin(((i-(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3)+(0.1))*(PI*CKpMID)/360)/CKpMgrooveturnR2))-CKpMgrooveturnR2)])
rotate([270,0,i+(0.1)])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}//end hull 2
}//end fors
difference(){
for(i=[(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3)+(0.1):(0.2):(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2)-(0.1)]){
translate([0,0,0])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}
cylinder($fn=180,d=CKpMID, h=pMH);
}
//1
hull(){
difference(){
for(i=[(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2)+(0.1):(0.2):(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2+CKpMd1+1)-(0.1)]){
translate([0,0,((CKpMgrooveD/2)+((sin(CKpMcutA)*CKpMgrooveturnR2)*360/(PI*CKpMID)))+((tan(CKpMcutA)*(i-(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2-0.0))*mi))])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}
cylinder($fn=180,d=CKpMID, h=pMH);
} //end diff
difference(){
for(i=[(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2)+(0.1):(0.2):(CKpMd7+CKpMd6+CKpMd5+CKpMd4+CKpMd3+CKpMd2+CKpMd1)-(0.1)]){
translate([0,0,0])
rotate([270,0,i])
cylinder($fn=CKpMcutcylRez,d=CKpMgrooveD,h=CKpMgrooveOD);
}
cylinder($fn=180,d=CKpMID, h=pMH);
} //end difference
} //end hull
///////////////////////////
} //end needlepathLEFT module
2D Cuts
- Parts to be cut out using a CNC machine
CKc1.scad
- need to add Nema motor mount
- would idlers help keep cenetered?
include <CKvars.scad>;
CKc1();
module CKc1(){
rez=p2number*p2needles*2; //calculate desired rezolution
$fn=rez; //defines resolution of circles.
translate([c1OD/2,0,0]){
difference(){
union(){
cylinder(h=c1H,d=c1OD);
} //end main union
cylinder(h=c1H+2,d=p3baseID); // donut hole
//base needle holes
////should these be circles instead? easier to cut? slot with rounded ends?
for(i=[1:p2needles*p2number]){
rotate([0,0,(360/p2number/p2needles/2)-(360/p2number/p2needles*i)]){
translate([-p2OD/2,-needleWidth/2,-0.01])
cube([p2needlegrooveDepth,needleWidth,p3wallH+0.02]);
} //end rotate
} //end for
//base mounting holes
//inner holes
for(i=[1:p3baseholenumber*p3number]){
rotate([0,0,(((360/p3number/p3baseholenumber))/2)-((360/p3number/p3baseholenumber)*i)]){
translate([-(p3baseID/2)-p3baseholefromODID,0,0])
cylinder(h=c1H+2,d=p3baseholeD,$fn=18);
} //end rotate
} //end inner hole set for
//outer holes
for(i=[1:p3baseholenumber*p3number]){
rotate([0,0,(((360/p3number/p3baseholenumber))/2)-((360/p3number/p3baseholenumber)*i)]){
translate([-(p3baseOD/2)+p3baseholefromODID,0,0])
cylinder(h=c1H+2,d=p3baseholeD,$fn=18);
} //end rotate
} //end outer hole set for
} //end main difference
} //end main translate
} //end CKc1 module
CKc2.scad
- rotating plate with gears
- need to calculate teeth per distance around outer diameter
include <CKvars.scad>;
// Copyright 2010 D1plo1d
// LGPL 2.1
t2t=6.858;
c2width=50;
c2gap=2;
c2OD=(c2width*2)+(c2gap*2)+p2OD+(p3wiggle*2)+(p3wallW*2);
c2ID=(c2gap*2)+p2OD+(p3wiggle*2)+(p3wallW*2);
c2teeth=((c2OD*PI)/t2t)-1;
c2dipitch=c2teeth/(c2OD*PI);
gear(c2teeth,circular_pitch=false,diametral_pitch=c2dipitch,pressure_angle=87, clearance=0.01);
//test_involute_curve();
//test_gears();
//demo_3d_gears();
// Geometry Sources:
// http://www.cartertools.com/involute.html
// gears.py (inkscape extension: /usr/share/inkscape/extensions/gears.py)
// Usage:
// Diametral pitch: Number of teeth per unit length.
// Circular pitch: Length of the arc from one tooth to the next
// Clearance: Radial distance between top of tooth on one gear to bottom of gap on another.
module gear(number_of_teeth,
circular_pitch=false, diametral_pitch=false,
pressure_angle=20, clearance = 0)
{
if (circular_pitch==false && diametral_pitch==false) echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch");
//Convert diametrial pitch to our native circular pitch
circular_pitch = (circular_pitch!=false?circular_pitch:180/diametral_pitch);
// Pitch diameter: Diameter of pitch circle.
pitch_diameter = number_of_teeth * circular_pitch / 180;
pitch_radius = pitch_diameter/2;
// Base Circle
base_diameter = pitch_diameter*cos(pressure_angle);
base_radius = base_diameter/2;
// Diametrial pitch: Number of teeth per unit length.
pitch_diametrial = number_of_teeth / pitch_diameter;
// Addendum: Radial distance from pitch circle to outside circle.
addendum = 1/pitch_diametrial;
//Outer Circle
outer_radius = pitch_radius+addendum;
outer_diameter = outer_radius*2;
// Dedendum: Radial distance from pitch circle to root diameter
dedendum = addendum + clearance;
// Root diameter: Diameter of bottom of tooth spaces.
root_radius = pitch_radius-dedendum;
root_diameter = root_radius * 2;
half_thick_angle = 360 / (4 * number_of_teeth);
difference()
{
union()
{
rotate(half_thick_angle) circle($fn=number_of_teeth*2, r=root_radius*1.001);
for (i= [1:number_of_teeth])
//for (i = [0])
{
rotate([0,0,i*360/number_of_teeth])
{
involute_gear_tooth(
pitch_radius = pitch_radius,
root_radius = root_radius,
base_radius = base_radius,
outer_radius = outer_radius,
half_thick_angle = half_thick_angle);
}
}
}
projection(cut = true) //use projection to create 2D
{
cylinder(d=c2ID,h=100);
}
}
}
module involute_gear_tooth(
pitch_radius,
root_radius,
base_radius,
outer_radius,
half_thick_angle
)
{
pitch_to_base_angle = involute_intersect_angle( base_radius, pitch_radius );
outer_to_base_angle = involute_intersect_angle( base_radius, outer_radius );
base1 = 0 - pitch_to_base_angle - half_thick_angle;
pitch1 = 0 - half_thick_angle;
outer1 = outer_to_base_angle - pitch_to_base_angle - half_thick_angle;
b1 = polar_to_cartesian([ base1, base_radius ]);
p1 = polar_to_cartesian([ pitch1, pitch_radius ]);
o1 = polar_to_cartesian([ outer1, outer_radius ]);
b2 = polar_to_cartesian([ -base1, base_radius ]);
p2 = polar_to_cartesian([ -pitch1, pitch_radius ]);
o2 = polar_to_cartesian([ -outer1, outer_radius ]);
// ( root_radius > base_radius variables )
pitch_to_root_angle = pitch_to_base_angle - involute_intersect_angle(base_radius, root_radius );
root1 = pitch1 - pitch_to_root_angle;
root2 = -pitch1 + pitch_to_root_angle;
r1_t = polar_to_cartesian([ root1, root_radius ]);
r2_t = polar_to_cartesian([ -root1, root_radius ]);
// ( else )
r1_f = polar_to_cartesian([ base1, root_radius ]);
r2_f = polar_to_cartesian([ -base1, root_radius ]);
if (root_radius > base_radius)
{
//echo("true");
polygon( points = [
r1_t,p1,o1,o2,p2,r2_t
], convexity = 3);
}
else
{
polygon( points = [
r1_f, b1,p1,o1,o2,p2,b2,r2_f
], convexity = 3);
}
}
// Mathematical Functions
//===============
// Finds the angle of the involute about the base radius at the given distance (radius) from it's center.
//source: http://www.mathhelpforum.com/math-help/geometry/136011-circle-involute-solving-y-any-given-x.html
function involute_intersect_angle(base_radius, radius) = sqrt( pow(radius/base_radius,2) - 1);
// Polar coord [angle, radius] to cartesian coord [x,y]
function polar_to_cartesian(polar) = [
polar[1]*cos(polar[0]),
polar[1]*sin(polar[0])
];
// Test Cases
//===============
module test_gears()
{
gear(number_of_teeth=51,circular_pitch=200);
translate([0, 50])gear(number_of_teeth=17,circular_pitch=200);
translate([-50,0]) gear(number_of_teeth=17,diametral_pitch=1);
}
module demo_3d_gears()
{
//double helical gear
translate([50,0])
{
linear_extrude(height = 10, center = true, convexity = 10, twist = -45)
gear(number_of_teeth=17,diametral_pitch=1);
translate([0,0,10])
rotate([0,180,180/17])
linear_extrude(height = 10, center = true, convexity = 10, twist = 45)
gear(number_of_teeth=17,diametral_pitch=1);
}
//spur gear
translate([0,-50]) linear_extrude(height = 10, center = true, convexity = 10, twist = 0)
gear(number_of_teeth=17,diametral_pitch=1);
}
module test_involute_curve()
{
for (i=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
{
translate(polar_to_cartesian([involute_intersect_angle( 0.1,i) , i ])) circle($fn=15, r=0.5);
}
}
To Do
- upper plate - mountain holder
- plate connector holes
- gear plate tooth calculations
- bearing mount holes
- table plate w/nema etc
- table legs?
- weight holder plate
- update mountain for larger OD's. need to up rezolution
- create 3D printed electronics box?
- yarn stick holder etc
- tensioner etc
See Also
- Open Source Textile Construction Set
- Open Source Circular Knitting Machine
- CircularKnitic Parametric