Augmented Reality: Difference between revisions

From Open Source Ecology
Jump to navigation Jump to search
No edit summary
Line 2: Line 2:


*FLOSS using https://www.learnopencv.com/augmented-reality-using-aruco-markers-in-opencv-c-python/ - Example using simple markers (ArUco) markers - with Python. When you see an icon, app replaces image with another image to augment information of image. OSE Use Case: building a 3D printer, aruco marker is attached to a part, and a video tells you how to build that part. This way, just with an app and marked parts - you can build an entire thing with 'self-generated' instructions. The savings here come from not needing to identify how a part goes together by looking at documentation. This requires you to (1) find and identify part; (2) follow instructions on that part. Challenges: identifying a part from many parts can be tricky if you have to dig through a bunch of parts. Following instructions can be cumbersome. Solutions with AR: part is identified automatically (pending marker). Quick on-demand, repeating instructions can be shown automatically, without you going through pages or hitting play for a video.
*FLOSS using https://www.learnopencv.com/augmented-reality-using-aruco-markers-in-opencv-c-python/ - Example using simple markers (ArUco) markers - with Python. When you see an icon, app replaces image with another image to augment information of image. OSE Use Case: building a 3D printer, aruco marker is attached to a part, and a video tells you how to build that part. This way, just with an app and marked parts - you can build an entire thing with 'self-generated' instructions. The savings here come from not needing to identify how a part goes together by looking at documentation. This requires you to (1) find and identify part; (2) follow instructions on that part. Challenges: identifying a part from many parts can be tricky if you have to dig through a bunch of parts. Following instructions can be cumbersome. Solutions with AR: part is identified automatically (pending marker). Quick on-demand, repeating instructions can be shown automatically, without you going through pages or hitting play for a video.
**Overall SWOT: good to identify parts, but you still have to put on the labels. If labels are done automatically - such as by image recognition, not marker - then we are set. Threat: cumbersome to learn unless there is a clear instructional. '''Conclusion:''' Image Recognition + AR is the solution. *Image Recognition*
**Overall SWOT: good to identify parts, but you still have to put on the labels. If labels are done automatically - such as by image recognition, not marker - then we are set. Threat: cumbersome to learn unless there is a clear instructional. Also, small parts such as small screws - it's not easy to label them. '''Conclusion:''' Image Recognition + AR is the solution. *Image Recognition*


=Links=
=Links=
*OS AR based on markers - https://www.openspace3d.com/softwarelogiciel/
*OS AR based on markers - https://www.openspace3d.com/softwarelogiciel/

Revision as of 20:08, 7 April 2020

Use Case for Build Instructionals using Markers

  • FLOSS using https://www.learnopencv.com/augmented-reality-using-aruco-markers-in-opencv-c-python/ - Example using simple markers (ArUco) markers - with Python. When you see an icon, app replaces image with another image to augment information of image. OSE Use Case: building a 3D printer, aruco marker is attached to a part, and a video tells you how to build that part. This way, just with an app and marked parts - you can build an entire thing with 'self-generated' instructions. The savings here come from not needing to identify how a part goes together by looking at documentation. This requires you to (1) find and identify part; (2) follow instructions on that part. Challenges: identifying a part from many parts can be tricky if you have to dig through a bunch of parts. Following instructions can be cumbersome. Solutions with AR: part is identified automatically (pending marker). Quick on-demand, repeating instructions can be shown automatically, without you going through pages or hitting play for a video.
    • Overall SWOT: good to identify parts, but you still have to put on the labels. If labels are done automatically - such as by image recognition, not marker - then we are set. Threat: cumbersome to learn unless there is a clear instructional. Also, small parts such as small screws - it's not easy to label them. Conclusion: Image Recognition + AR is the solution. *Image Recognition*

Links