Rapid Learning Facility

From Open Source Ecology
(Redirected from Rapid Learning Facilities)
Jump to: navigation, search

Tehnology and Humanities - and Methods for designing the RLF

The rapid learning facility - RLF- is proposed as the core for rapid learning of productivity and humanity.

We can claim that there are two main areas of human endeavor: productivity (technology), and cultural advancement (integrated humans pursuing self-determination). While the initial RLF focuses on material abundance, it is not devoid of cultivating moral intelligence. It may be easiest to conceptualize an RLF for productivity, but if all of human endeavor including education, economics, politics, etc - are part of human-created technology - ie, the Technosphere - then it follows that we can treat the applied, hands-on, experiential learning of the humanities in an experimental, physical facility organized similarly to the RLF for physical artifacts.

The RLF would be thus most sensibly broken into physical manufacturing, and a rapid learning environment for the humanities and social studies and sciences. For human performance, a lab with various human diagnostics may be needed (EEG, brain-human interface, various sensors, x ray, etc). For Learning How To Learn, there may be a lab for AI development, various online resources, physical artifacts such as learning games. The distinction between learning environments for technology on one side and the humanities on the other would be blended: for example, learning productivity and tech could include physical exercises for hand-eye coordination or sensing of texture - such that experiential, sensory, intellectual, emotional, moral learning happens all at the same time. Anything less is specialization, which is for insects, not humans - especially those humans on a life journey to meet homo deus.

The immediate challenge is information overload - ie, the speed with which Neuroplasticity can occur. Part of our work would thus involve a study of how fast such learning can occur, and what factors affect this rate. Our initial guess is that an optimal blend of diet, exercise, sleep, mental hygiene, spiritual practice, moral intelligence learning, emotional intelligence learning, and intellectual intelligence learning will take a part, with nonlinear improvement occurring with added integration of these elements into the learning curriculum. That is - how is information overload or cognitive overload affected by other practices of being human - such that we optimize our life for learning, thriving, and evolving. This is a worthwhile question, and its pursuit must be a choice (agency) accessible to all classes and cultures within the human population.


Idea: break technology down First - Product-based - by areas of endeavor (for example construction may include 256 square feet of 17 trades learning with atomic experiments, and up to 2000 sf if solar concrete, steel, 3D printing/plastic recycling, lumber production, etc, are included. The facility would include $1M productivity increase per year (24 students trained and producing) - making materials, parts, and modules for the Seed Eco-Home. Direct connection to economic output is created. Second - by topic - such as go into all related technology in a focus group - such as solar steel that includes alloying, precision machining, boring, air bearings, steel recycling, solar energy as fuel, integration of wind turbine, WAAM, wire drawing, rolling, forging, etc. Or Third - micro or part level - where the entire section focuses on a small area such as bore: which means air bearing, pistons for engines, hydraulic pumps, compressors, high pressure pumps, vac pumps, electronics for timing and fuel injection, solenoids, injectors - etc - which means effectively an engine lab.

Principle: facility is used for both learning and production. Learning and physical goods are the products. Production appears to be overemphasized, but all we mean is that human needs must be met first, sustainably, and regeneratively - so that various global calamities such as resource conflicts, environmental destruction, or political corruption do not occur. The mental model is that individuals must act responsibly, as institutions can only help to make people behave responsibly, but are not a substitute for responsibility.

Knowledge Architecture

Knowledge architecture can be described in various forms:

  • Mindmaps
  • Modular breakdowns - such as 50 and 500 items, but must be a complete, degenerate set
  • Knowledge structures in various fields - what are the key components of knowledge in each specific field. In each field, different topics or components will have higher importance.
  • Zachman Ontology maps - for execution in each field
  • RLF designs in each field - physical and knowledge infrastructures for learning a topic fast
  • Integrated enterprise designs - highly integrated enterprises are and possible to implement, until they become possible
  • Integrated production facility designs -infrastructures required for the production side of integrated enterprises
  • Metamaps of all knowledge and knowhow

Exploration of RLF Learning Areas

  • Tractor + RTK GPS Drones
  • 3DP - roofless roof closures, rubber, plastic lumber, trim, landscaping block and geogrid
  • Solar concrete - pottery kiln for 1 yard of cement batch. Trailer, PV, mobile windmill, mobile cement plant.
  • Piston lab
    • Independent cylinders, universal hydraulic drive
    • Hydrogen freepiston engine
    • Common rail + injectors
  • Universal Rotor - reinventing the wheel
    • 3D printed wheel rubber + tracks
    • car and heavy machine wheels + drive
    • Recyclable tires
    • Pivots
    • 360 deg turnstiles
  • Space frame
    • Roofless roof
    • Telescoping
    • Towers
    • Buildings
    • Scissor lifts
  • Power cube
    • 16 hp units
    • Solar electric with Power Wall co-function
  • Solar Hydrogen
    • Electrolyzer
    • Compressorless 35 bar
    • Phase 1 has compression. Works with hydrogen engine
  • House
    • Power tool training
    • Modules building. Feeds on Solar Concrete
  • OSES
    • Open Source Everything Store for Lifetime Design

Industrial version of RLF adds:

  • Foundry
  • Hot metal
  • Industrial robot
  • Precision machining outside of air bearings
  • Combine:
    • Wheat
    • Fuel pellets
    • Charcoal pellets
    • Feed and Fertilizer - waste products, dehydrated offal

Renewable Energy Lab

  • Space Frames from space frame bay - towers for windmill.
  • Space frame VAWT blades hung on space frame disc, also space frame HAWT blades
  • Compressed air at 2 ksi and 7 ksi
  • Pelletizer
  • Pallet charcoal maker
  • Solar Hydrogen generator
  • Atmospheric Water Generator - both powered and Google AWG
  • Hydraulic engine from engine lab to burn hydrogen and charcoal
  • Pallets to diesel converter
  • Solar Cube with inverter - using your cordless bats for off-grid power, 1 kWhr

Modular Cell Phone

  • Used as command and control for automation and vehicles, feed for AR glasses, machine control, etc. Multispectrum, multiprotocol
  • Delivers aborted promise of Phonebloks

Solar Steel

  • Solar steel batch

Gas Lab

  • Make hydrogen, oxygen, argon shielding gas, nitrogen, carbon dioxide
  • And store up to 10 ksi

3DP

  • Shred
  • Filament
  • Rubber, tracks, belts, o-rings
  • Glazing
  • Space frame connectors
  • Conduit, plumbing, plastic lumber, trim, siding, various mounting hardware.

Carpentry and Welding

  • All wood tools
  • All metal tools up to ironworker, welder, oxy hydrogen torch and welder

Solar Concrete

Space Frames

  • Disconnectable connector for large workshop structure
  • Disconnectable linear connector for trailer
  • Disconnectable connector for tractor frame
  • Trailer
  • Tractor frame
  • Car frame
  • Rotary kiln
  • LWS with Roofless Roof
  • Ramps for trailer
  • Wheels

Open Source Everything Store Lab

  • Scavenges all other bays, but primarily 3DP, microcontrollers, motors, batteries, and open design
  • Machining center
  • Product CAD
  • Marketing
  • On-damand manufacturing website dissemination - we produce, and set up others in enterprise with software and hardware on the OSE Linux stack.

Drones

  • Multimedia
  • RTK GPS
  • Docking and charging on carriers
  • Automated surveying
  • CV
  • AI
  • Delivery vehicles
  • Automated earthworking - foundation, site grading, trench, tree planting, ponds,
  • Folow-me
  • Swarming
  • Drone networks for internet/comms
  • Ham to 5.4 Ghz

Tool and Die Lab

  • Tools, tool heads, gears, blades, bits, circular blades

Microcontroller and Sensor Lab

  • Universal Prototyping Board for socketed design with lever terminals for production, lifetime design boards

Transistor Lab

  • Transistoraler

Fab Lab

  • Desktop Semiconductor Foundry for making microprocessors
  • Logic design
  • Tapeout - mask making
  • VLSI tools to competitive marketable products, at least microcontroller or small computer

Air Bearings Lab

  • R&D on non-oil engines, pumps, pistons bearings

Power Electronics Lab

  • OS PNP with reusable components with reflux. Melt-and-shake gets the components back off for reuse. World's first ever reusable PNP components method
  • Brain + power boards for welder, inverter, charger, charge controller, plasma cutter, ac controller, dV voltage controller, bldc driver, induction furnace, RF source, microwave gen, HVAC and other solid state transformers
  • 1-100kW water and air cooled designs. 1kW power elements.
  • Universal rapid Prototyping power element with 3D printed board, sockets, lever nuts, heat sink, fan


Engine and Piston Lab

  • Pistons for air, water, hydraulics, explosions from low pressure to 50ksi up to water jet pumps
  • Hyd cyl
  • Air engine
  • Hydraulic motor - precision grind and heat treat
  • Blocks
  • Sleeves
  • Injectors and solenoid valves from 5 to 50000 psi
  • Sprayer pump
  • Compressor - to 10000 psi

Precision Machining and Automated Mfg Lab

  • Space frame machining center
  • Belt drive
  • Chain drive
  • Rotary encoder
  • Linear encoder
  • 3D print head
  • Planetary gear - 3D printed
  • Automated ZnAl mold caster

3DP

WAAM Lab

  • Robotic welder

Robot Arm Lab

Space Frames

PV Lab

  • 16*16' space
  • Sand refining to 6" ingots at a rate of one 5' ingot per 24 hr for 10kW of PV per day
  • Wire saw
  • Silicon dioxide to silicon
  • Zone refining
  • Dope for half the semiconductor
  • 10kW induction heater, runs on solar and wind from RE Bay


Links