User:Dorkmo/Ideas/Battery/SCAD/Sandbox
< User:Dorkmo | Ideas | Battery | SCAD
Jump to navigation
Jump to search
mesh
new mesh module idea
height = 80; tub_width = 65; tub_length = 70; outsidewall = 5; basethickness = 5; tub_wall = 5; spacing = 5; cage_height = 60; cage_wall = 7.5; cage_endwall = 2; cage_base = 5; wedge_hieght = 10; mesh_opening = 1 ; mesh_angle = 45; mesh_spacing = 2.5; intersection() { translate([0.1,-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))),0]) cube([cage_wall+0.2,(((tub_length-(spacing*2))-(cage_endwall*2))),cage_height], center=false); //need to translate closer to the cube here with llarge holes translate([0,0,-mesh_spacing]) { rotate([0,-mesh_angle,0]) scale([1,1,(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/sin(90-mesh_angle))*sin(90))]) { //for - pair of rows to height for (h = [1 : floor(((cage_height-cage_base-((((((sin(90)*(cage_wall/sin(90-mesh_angle))))-((sin(mesh_angle)*((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(sin(90))))))/sin(90))*sin(mesh_angle))))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(h*[0,0,mesh_spacing]) { //for - second row for (w = [1 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { //translate second row translate([0,-mesh_spacing/2,mesh_spacing/2]) { //make second row copies translate(w*[0,mesh_spacing,0]) { rotate([45,0,0]) { cube(size = [(cage_wall*2)+(cage_height/sin(90))*sin(mesh_angle),mesh_opening,mesh_opening], center=false); } } } } //for - create first row for (w = [0 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(w*[0,mesh_spacing,0]) { rotate([45,0,0]) { //need to tweak cube(size = [(cage_wall*2)+(cage_height/sin(90))*sin(mesh_angle),mesh_opening,mesh_opening],center=false); } } } } } } ////end cube } } echo((cage_height/sin(90))*sin(mesh_angle)); echo((tub_width-(spacing*3))/2);
mesh
tweaking the pattern for holes through the cage
mesh_opening = 1 ; mesh_angle = 45; mesh_spacing = 2.5; cage_wall = 10 ; width = 20; height = 20; cube(size = [20,20,20], center=true); for (h = [0 : height]) { translate(h*[0,0,mesh_spacing]) { rotate([0,mesh_angle,0]) { for (w = [0 : width]) { translate(w*[0,mesh_spacing,0]) { rotate([0,0,45]) { //could put a scale command here to make opening a perfect square cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(10/sin(90-mesh_angle)))], center=false); } } } } } }
cage
cage with new mesh module
- mesh module needs adjusted a little. missing a little from side
height = 80; tub_width = 65; tub_length = 70; outsidewall = 5; basethickness = 5; tub_wall = 5; spacing = 5; cage_height = 60; cage_wall = 7.5; cage_endwall = 2; cage_base = 5; wedge_hieght = 10; mesh_opening = 1 ; mesh_angle = 60; mesh_spacing = 2; //begin underlying cage module module cage() { difference() { cube(size = [(tub_width-(spacing*3))/2,tub_length-(spacing*2),cage_height], center=false); //cut hole for powder to sit in translate([cage_wall, cage_endwall, cage_base]) cube(size = [((tub_width-(spacing*3))/2)-(cage_wall*2),(tub_length-(spacing*2))-(cage_endwall*2),cage_height-cage_base+1], center=false); } } //end cage //begin mesh hole grid module module holes() { intersection() { translate([0,-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))),0]) cube([cage_wall+0.2,1+((((tub_length-(spacing*2))-(cage_endwall*2)))),cage_height], center=false); //need to translate closer to the cube here with llarge holes translate([0,0,-mesh_spacing]) { rotate([0,-mesh_angle,0]) scale([1,1,(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/sin(90-mesh_angle))*sin(90))]) { //for - pair of rows to height for (h = [1 : floor(((cage_height-cage_base-((((((sin(90)*(cage_wall/sin(90-mesh_angle))))-((sin(mesh_angle)*((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(sin(90))))))/sin(90))*sin(mesh_angle))))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(h*[0,0,mesh_spacing]) { //for - second row for (w = [1 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { //translate second row translate([0,-mesh_spacing/2,mesh_spacing/2]) { //make second row copies translate(w*[0,mesh_spacing,0]) { rotate([45,0,0]) { cube(size = [(cage_wall*2)+(cage_height/sin(90))*sin(mesh_angle),mesh_opening,mesh_opening], center=false); } } } } //for - create first row for (w = [0 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(w*[0,mesh_spacing,0]) { rotate([45,0,0]) { //need to tweak cube(size = [(cage_wall*2)+(cage_height/sin(90))*sin(mesh_angle),mesh_opening,mesh_opening],center=false); } } } } } } ////end cube } } } ////end mesh hole grid module //begin final cage construction difference() { cage(); translate([(((tub_width-(spacing*3))/2)-cage_wall)+0.0, cage_endwall+((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/2)+(((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2), cage_base]) { holes(); } translate([(cage_wall)-0.0,cage_endwall+((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/2)+(((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2), cage_base]) { mirror([1,0,0]) { #holes(); } } } //end cage //calculate mesh wall minimum thickness echo(sin(45)*((mesh_spacing-((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/sin(90))); //calculate verticle height of mesh holes to take away from max height of holes //works okay up to 45 then bugs out. might be because its before the scale down echo((((((sin(90)*(cage_wall/sin(90-mesh_angle))))-((sin(mesh_angle)*((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(sin(90))))))/sin(90))*sin(mesh_angle)));
cage with old mesh
height = 80; tub_width = 65; tub_length = 70; outsidewall = 5; basethickness = 5; tub_wall = 5; spacing = 5; cage_height = 60; cage_wall = 7.5; cage_endwall = 2; cage_base = 5; wedge_hieght = 10; mesh_opening = 1 ; mesh_angle = 45; mesh_spacing = 2.5; //begin underlying cage module module cage() { difference() { cube(size = [(tub_width-(spacing*3))/2,tub_length-(spacing*2),cage_height], center=false); //cut hole for powder to sit in translate([cage_wall, cage_endwall, cage_base]) cube(size = [((tub_width-(spacing*3))/2)-(cage_wall*2),(tub_length-(spacing*2))-(cage_endwall*2),cage_height-cage_base+1], center=false); } } //end cage //begin mesh hole grid module module holes() { for (h = [1 : floor(((cage_height-cage_base-((((((sin(90)*(cage_wall/sin(90-mesh_angle))))-((sin(mesh_angle)*((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(sin(90))))))/sin(90))*sin(mesh_angle))))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(h*[0,0,mesh_spacing]) { //scale command here to make openings perfect squares scale([1,1,(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/sin(90-mesh_angle))*sin(90))]) { rotate([0,90-mesh_angle,0]) { for (w = [1 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(w*[0,mesh_spacing,0]) { rotate([0,0,45]) { cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(cage_wall/sin(90-mesh_angle)))], center=false); } } } //begin second row for (w = [0 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate([mesh_spacing/2,mesh_spacing/2,-mesh_spacing/2]) { translate(w*[0,mesh_spacing,0]) { rotate([0,0,45]) { cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(cage_wall/sin(90-mesh_angle)))], center=false); } } } } } } } } } //end mesh hole grid module //begin final cage construction difference() { cage(); translate([((tub_width-(spacing*3))/2)-cage_wall-((sin(mesh_angle)*sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/2), cage_endwall-(mesh_spacing/2)+(((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2), cage_base]) { holes(); } translate([cage_wall+((sin(mesh_angle)*sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/2), cage_endwall-(mesh_spacing/2)+(((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2), cage_base]) { mirror([1,0,0]) { #holes(); } } } //end cage //calculate mesh wall minimum thickness echo(sin(45)*((mesh_spacing-((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/sin(90))); //calculate verticle height of mesh holes to take away from max height of holes //works okay up to 45 then bugs out. might be because its before the scale down echo((((((sin(90)*(cage_wall/sin(90-mesh_angle))))-((sin(mesh_angle)*((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(sin(90))))))/sin(90))*sin(mesh_angle)));
inside cage
height = 60; tub_width = 95; tub_length = 70; outsidewall = 5; basethickness = 5; tub_wall = 5; spacing = 5; cage_height = 40; cage_wall = 10; cage_endwall = 5; cage_base = 5; wedge_hieght = 10; mesh_opening = 2 ; mesh_angle = 45; mesh_spacing = 4; mesh_width = 17; mesh_height = 10; difference() { cube(size = [(tub_width-(spacing*3))/2,tub_length-(spacing*2),cage_height], center=false); translate([cage_wall, cage_endwall, cage_base]) cube(size = [((tub_width-(spacing*3))/2)-(cage_wall*2),(tub_length-(spacing*2))-(cage_endwall*2),cage_height-cage_base+1], center=false); translate([((tub_width-(spacing*3))/2)-cage_wall-((sin(mesh_angle)*sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/2), cage_endwall-(mesh_spacing/2)+(((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2), cage_base]) { for (h = [1 : mesh_height]) { translate(h*[0,0,mesh_spacing]) { scale([1,1,(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/sin(90-mesh_angle))*sin(90))]) { rotate([0,90-mesh_angle,0]) { for (w = [1 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(w*[0,mesh_spacing,0]) { rotate([0,0,45]) { //could put a scale command here to make opening a perfect square cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(10/sin(90-mesh_angle)))], center=false); } } } //begin second row #for (w = [0 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate([mesh_spacing/2,mesh_spacing/2,-mesh_spacing/2]) { translate(w*[0,mesh_spacing,0]) { rotate([0,0,45]) { //could put a scale command here to make opening a perfect square cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(10/sin(90-mesh_angle)))], center=false); } } } } //end second row } } } } } } echo(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))); echo((tub_length-(spacing*2))-(cage_endwall*2)); echo((((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2));
tub
single cell tub
height = 60; oa_width = 80; oa_length = 105; outsidewall = 5; basethickness = 5; membranethickness = 5; tub_wall = 5; spacing = 5; cage_height = 40; cage_wall = 10; cage_base = 5; difference() { cube(size = [oa_width, oa_length, height], center=false); translate([outsidewall,outsidewall,basethickness]) cube(size = [oa_width-(outsidewall*2), oa_length-(outsidewall*2), height-basethickness], center=false); }
locks
sphere lock in divot
height = 60; tub_width = 95; tub_length = 70; outsidewall = 5; basethickness = 5; tub_wall = 5; spacing = 5; cage_height = 40; cage_wall = 7.5; cage_endwall = 1; cage_base = 5; wedge_hieght = 10; mesh_opening = 1 ; mesh_angle = 35; mesh_spacing = 2; lock_radius = 5; lock_depth = 1; lock_distancefromcenter = 0; module half() { difference() { union() { //lock_sphere padding added to endwall difference() { translate([((tub_width-(spacing*3))/2)/2,lock_depth-lock_radius,(cage_height)/2]) { sphere(lock_radius+cage_endwall); } translate([(((tub_width-(spacing*3))/2)/2)-(lock_radius+cage_endwall),-(((lock_radius+cage_endwall)*2)-(cage_endwall+lock_depth)),((cage_height)/2)-(lock_radius+cage_endwall)]) { cube(size = [((lock_radius+cage_endwall)*2),((lock_radius+cage_endwall)*2)-lock_depth-cage_endwall,(lock_radius+cage_endwall)*2]); } } mirror([0,1,0]) { translate([0,-(tub_length-(spacing*2)),0]) { difference() { translate([((tub_width-(spacing*3))/2)/2,lock_depth-lock_radius,(cage_height)/2]) { sphere(lock_radius+cage_endwall); } translate([(((tub_width-(spacing*3))/2)/2)-(lock_radius+cage_endwall),-(((lock_radius+cage_endwall)*2)-(cage_endwall+lock_depth)),((cage_height)/2)-(lock_radius+cage_endwall)]) { cube(size = [((lock_radius+cage_endwall)*2),((lock_radius+cage_endwall)*2)-lock_depth-cage_endwall,(lock_radius+cage_endwall)*2]); } } } } difference() { cube(size = [(tub_width-(spacing*3))/2,tub_length-(spacing*2),cage_height], center=false); //delete half of it cube(size = [((tub_width-(spacing*3))/2)/2,(tub_length-(spacing*2)),cage_height], center=false); translate([cage_wall, cage_endwall, cage_base]) cube(size = [((tub_width-(spacing*3))/2)-(cage_wall*2),(tub_length-(spacing*2))-(cage_endwall*2),cage_height-cage_base+1], center=false); translate([((tub_width-(spacing*3))/2)-cage_wall-((sin(mesh_angle)*sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/2), cage_endwall-(mesh_spacing/2)+(((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2), cage_base]) { for (h = [1 : floor(((cage_height-cage_base-((((((sin(90)*(cage_wall/sin(90-mesh_angle))))-((sin(mesh_angle)*((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(sin(90))))))/sin(90))*sin(mesh_angle))))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(h*[0,0,mesh_spacing]) { scale([1,1,(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/sin(90-mesh_angle))*sin(90))]) { rotate([0,90-mesh_angle,0]) { for (w = [1 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate(w*[0,mesh_spacing,0]) { rotate([0,0,45]) { //could put a scale command here to make opening a perfect square cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(cage_wall/sin(90-mesh_angle)))], center=false); } } } //begin second row for (w = [0 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)]) { translate([mesh_spacing/2,mesh_spacing/2,-mesh_spacing/2]) { translate(w*[0,mesh_spacing,0]) { rotate([0,0,45]) { //could put a scale command here to make opening a perfect square cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(cage_wall/sin(90-mesh_angle)))], center=false); } } } } //end second row } } } } } } } //cutout lock_sphere translate([((tub_width-(spacing*3))/2)/2,lock_depth-lock_radius,(cage_height)/2]) { sphere(lock_radius); } mirror([0,1,0]) { translate([0,-(tub_length-(spacing*2)),0]) { translate([((tub_width-(spacing*3))/2)/2,lock_depth-lock_radius,(cage_height)/2]) { sphere(lock_radius); } } } } } half(); mirror([1,0,0]) { translate([-((tub_width-(spacing*3))/2),0,0]) { half(); } } //calculate verticle height of mesh holes to take away from max height of holes //works okay up to 45 then bugs out. might be because its before the scale down echo((((((sin(90)*(cage_wall/sin(90-mesh_angle))))-((sin(mesh_angle)*((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(sin(90))))))/sin(90))*sin(mesh_angle)));