User:Dorkmo/Ideas/Battery/SCAD/Sandbox
< User:Dorkmo | Ideas | Battery | SCAD
Jump to navigation
Jump to search
mesh
tweaking the pattern for holes through the cage
mesh_opening = 1 ;
mesh_angle = 45;
mesh_spacing = 2.5;
cage_wall = 10 ;
width = 20;
height = 20;
cube(size = [20,20,20], center=true);
for (h = [0 : height])
{
translate(h*[0,0,mesh_spacing])
{
rotate([0,mesh_angle,0])
{
for (w = [0 : width])
{
translate(w*[0,mesh_spacing,0])
{
rotate([0,0,45])
{
//could put a scale command here to make opening a perfect square
cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(10/sin(90-mesh_angle)))], center=false);
}
}
}
}
}
}
inside cage
height = 60;
tub_width = 95;
tub_length = 70;
outsidewall = 5;
basethickness = 5;
tub_wall = 5;
spacing = 5;
cage_height = 40;
cage_wall = 10;
cage_endwall = 5;
cage_base = 5;
wedge_hieght = 10;
mesh_opening = 2 ;
mesh_angle = 45;
mesh_spacing = 4;
mesh_width = 17;
mesh_height = 10;
difference()
{
cube(size = [(tub_width-(spacing*3))/2,tub_length-(spacing*2),cage_height], center=false);
translate([cage_wall, cage_endwall, cage_base])
cube(size = [((tub_width-(spacing*3))/2)-(cage_wall*2),(tub_length-(spacing*2))-(cage_endwall*2),cage_height-cage_base+1], center=false);
translate([((tub_width-(spacing*3))/2)-cage_wall-((sin(mesh_angle)*sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/2), cage_endwall-(mesh_spacing/2)+(((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2), cage_base])
{
for (h = [1 : mesh_height])
{
translate(h*[0,0,mesh_spacing])
{
scale([1,1,(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/(((sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))/sin(90-mesh_angle))*sin(90))])
{
rotate([0,90-mesh_angle,0])
{
for (w = [1 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)])
{
translate(w*[0,mesh_spacing,0])
{
rotate([0,0,45])
{
//could put a scale command here to make opening a perfect square
cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(10/sin(90-mesh_angle)))], center=false);
}
}
}
//begin second row
#for (w = [0 : floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing)])
{
translate([mesh_spacing/2,mesh_spacing/2,-mesh_spacing/2])
{
translate(w*[0,mesh_spacing,0])
{
rotate([0,0,45])
{
//could put a scale command here to make opening a perfect square
cube(size = [mesh_opening,mesh_opening,(mesh_opening*2)+(sin(90)*(10/sin(90-mesh_angle)))], center=false);
}
}
}
}
//end second row
}
}
}
}
}
}
echo(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)));
echo((tub_length-(spacing*2))-(cage_endwall*2));
echo((((((tub_length-(spacing*2))-(cage_endwall*2))-(((floor((((tub_length-(spacing*2))-(cage_endwall*2))-(sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening))))/mesh_spacing))*mesh_spacing)+sqrt((mesh_opening*mesh_opening)+(mesh_opening*mesh_opening)))))/2));
single cell tub
height = 60;
oa_width = 80;
oa_length = 105;
outsidewall = 5;
basethickness = 5;
membranethickness = 5;
tub_wall = 5;
spacing = 5;
cage_height = 40;
cage_wall = 10;
cage_base = 5;
difference()
{
cube(size = [oa_width, oa_length, height], center=false);
translate([outsidewall,outsidewall,basethickness])
cube(size = [oa_width-(outsidewall*2), oa_length-(outsidewall*2), height-basethickness], center=false);
}