Solar Combined Heat Power System: Difference between revisions

From Open Source Ecology
Jump to navigation Jump to search
No edit summary
No edit summary
Line 62: Line 62:
==== Technical Drawings and CAD ====
==== Technical Drawings and CAD ====
==== CAM Files ====
==== CAM Files ====
##[[CHP - Component Design - Boundary Layer Turbine (BLT)]]
===Component Design - Boundary Layer Turbine (BLT)===
###[[BLT - Diagrams]]
The Boundary Layer Turbine is based on a prototype from Dan Granett Product Design. The 12 inch diameter turbine produced 4 kW of electric power in test runs, at a cost of $500 in materials plus fabrication costs.
###[[BLT - Conceptual drawings]]
==== Diagrams ====
###[[BLT - Performance specifications]]
==== Conceptual drawings ====
###[[BLT - Performance calculations]]
==== Performance specifications ====
###[[BLT - Technical drawings and CAD]]
==== Performance calculations ====
###[[BLT - CAM files whenever available]]
==== Technical drawings and CAD ====
##[[CHP - Subcomponents]]
==== CAM files whenever available ====
#[[CHP - Deployment and Results]]
=== Subcomponents ===
##[[CHP - Production steps]]
==Deployment and Results ==
##[[CHP - Flexible Fabrication or Production]]
=== Production steps ===
##[[CHP - Bill of materials]]
=== Flexible Fabrication or Production ===
##[[CHP - Pictures and Video]]
=== Bill of materials ===
##[[CHP - Data]]
=== Pictures and Video ===
#[[CHP - Documentation and Education]]
=== Data ===
##[[CHP - Documentation]]
==Documentation and Education ==
##[[CHP - Enterprise Plans]]
=== Documentation ===
#[[CHP - Resource Development]]
=== Enterprise Plans ===
##[[CHP - Identifying Stakeholders]]
==Resource Development ===
###[[CHP - Information Collaboration]]
=== Identifying Stakeholders ===
####[[CHP - Wiki Markup]]
==== Information Collaboration ====
####[[CHP - Addition of Supporting References]]
===== Wiki Markup =====
####[[CHP - Production of diagrams, flowcharts, 3D computer models, and other qualitative information architecture]]
===== Addition of Supporting References =====
####[[CHP - Technical Calculations, Drawings, CAD, CAM, other]]
===== Production of diagrams, flowcharts, 3D computer models, and other qualitative information architecture =====
###[[CHP - Prototyping]]
===== Technical Calculations, Drawings, CAD, CAM, other =====
###[[CHP - Funding]]
==== Prototyping ====
###[[CHP - Preordering working products]]
==== Funding ====
###[[CHP - Grantwriting]]
==== Preordering working products ====
###[[CHP - Publicity]]
==== Grantwriting ====
###[[CHP - User/Fabricator Training and Accreditation]]
==== Publicity ====
###[[CHP - Standards and Certification Developmen]]
==== User/Fabricator Training and Accreditation ====
###[[CHP - Other]]
==== Standards and Certification Developmen ====
##[[CHP - Grantwriting]]
==== Other ====
###[[CHP - Volunteer grantwriters]]
=== Grantwriting ===
###[[CHP - Professional, Outcome-Based Grantwriters]]
==== Volunteer grantwriters ====
##[[CHP - Collaborative Stakeholder Funding]]
==== Professional, Outcome-Based Grantwriters ====
##[[CHP - Tool and Material Donations]]
=== Collaborative Stakeholder Funding ===
##[[CHP - Charitable Contributions]]
=== Tool and Material Donations ===
=== Charitable Contributions ===

Revision as of 03:58, 30 August 2007



Solar Turbine CHP - this is the holy grail of the future world. Forget about expensive solar cells, nukes, coal, or hydro - utilize the heat of the sun directly, with solar concentrators running a power cycle that has been proven in geothermal plants. One key is to develop an efficient turbine - Jeff Sterling, who claims that a working, small scale system (kW power range) is within month from release - from Matteran Energy has told me that it took him 10 years to realize, and now solve, this problem. Conceptually - the problem is simple - capturing the energy of an expanding gas in a rotor, to convert the energy to electricity. A solar turbine is a tractable problem, and deserves full attention. With 1 kW of insolation from every square meter on earth, such a proposition must be consiered seriously. This includes possibilities of thermal storage when the sun does not shine - just do the basic feasibility calculations and convince yourself that this is possible - even for extended periods beyond 12 hour nights. Check out the http://www.shpegs.com/ open source project for further background on a large scale implementation. Note that technical drawings exist for a 50% efficient solar turbine - look for the C. Christopher Newton thesis at http://www.redrok.com/engine.htm#turbine - but fabrication costs need to be proven on such project. All in all, backup power - such as electricity derived from alcohol combustion in an engine - could be used - but it is more interesting to utilize a backup stove that can produce the necessary heat for the turbine cycle. This is especially useful in conjunction with space and greenhouse heating in the winter. Moreover, MIT's Fab Lab has done work in optimizing diesel engines produced by Vigyan Ashram in India (http://cba.mit.edu/projects/fablab/apps.html) - and these may be available for opensourcing. If so, it would be instructive to fabricate diesel engines locally at OSE for backup power, and optimizing them for waste vegetable oil operation. Price predictions are $2-4k per balance of system kilowatt.

Collaboration

Review of Project Status

We are currently designing a scaleable version of a Boundary Layer Turbine, the heart of the CHP system.

Current Work

Developments Needed

General

Specific

Background Debriefing

Information Work

Hardware Work

Sign-in

Development Work Template

Product Definition

General

General Scope

Product Ecology

Localization

Scaleability

Scaleability is most crucial in this project. We are pursuing a design with a focus on how scale can be achieved with minimal modifications. As such, the system is designed for stand-alone remote power applications (under 1 kW) to home (1 kW) and village (100 kW) scales. If the the BLT is used with other fuel sources, this is prime for mobile applications - vehicles and all devices which require hybrid power drive.

Analysis of Scale

Lifecycle Analysis

Enterprise Options

Development Approach

Timeline

Development Budget

Value Spent
Value available
Value needed

Deliverables and Product Specifications

Industry Standards

Market and Market Segmentation

Salient Features and Keys to Success

Technical Design

Product System Design

Diagrams and Conceptual Drawings

Pattern Language Icons
Structural Diagram
Funcional or Process Diagram
Workflow

Technical Issues

Deployment Strategy

Performance specifications

Calculations

Design Calculations
Yields
Rates
Structural Calculations
Power Requirements
Ergonomics of Production
Time Requirements
Economic Breakeven Analysis
Scaleability Calculations
Growth Calculations

Technical Drawings and CAD

CAM Files

Component Design - Boundary Layer Turbine (BLT)

The Boundary Layer Turbine is based on a prototype from Dan Granett Product Design. The 12 inch diameter turbine produced 4 kW of electric power in test runs, at a cost of $500 in materials plus fabrication costs.

Diagrams

Conceptual drawings

Performance specifications

Performance calculations

Technical drawings and CAD

CAM files whenever available

Subcomponents

Deployment and Results

Production steps

Flexible Fabrication or Production

Bill of materials

Pictures and Video

Data

Documentation and Education

Documentation

Enterprise Plans

Resource Development =

Identifying Stakeholders

Information Collaboration

Wiki Markup
Addition of Supporting References
Production of diagrams, flowcharts, 3D computer models, and other qualitative information architecture
Technical Calculations, Drawings, CAD, CAM, other

Prototyping

Funding

Preordering working products

Grantwriting

Publicity

User/Fabricator Training and Accreditation

Standards and Certification Developmen

Other

Grantwriting

Volunteer grantwriters

Professional, Outcome-Based Grantwriters

Collaborative Stakeholder Funding

Tool and Material Donations

Charitable Contributions