Hydrogen Production

From Open Source Ecology
Jump to: navigation, search


- This page explores various methods of hydrogen production


Energy Requirements

  • about 50kWhr [1] to produce one kg of hydrogen. At electrical costs of 10 cents per kWhr, that is $5 per kilo, equivalent to a $5/gal of gasoline cost for the Energy Density.
  • For the Seed Eco-Home built in 2016 - the total installed marginal cost of 3kW is $2000 in 2017 - See Seed Eco-Home PV Cost. This could produce 1 kg of hydrogen in 3 days. Perfect. Annual cost of fuel at $3/gal is $1200 - 400 gallons at 25 mpg - for 10k average miles. So we would get free fuel after 2 years of use.
  • If cost over lifetime is considered - 20 years at 3kW of production yields 20*365*6*3 kWhrs = 131,400 kWhrs. This yields an energy cost of 1.5 cents per kilowatt hour. Or equivalent to 80 cent per gallon gasoline cost.
  • This makes a great case for the Seed Eco-Home + Hydrogen Filling Station + Open Source Hydrogen Car + Microfactory + Aquaponic Greenhouse as a productive unit for civilization with automated food harvest and passive electricity and fuels production.

Electrolysis Of Water

Wind Hydrogen

See $6k concept design of 20 kw wind turbine - Deka-kW_VAWT_Wind_Turbine. If the think lives for 20 years, and has a median capaity factor of 40% - [2] - then we are getting 5 kW of power for $6k. Compared to 3kW for $2k, but with 1/2 the capacity factor of wind - the solar option translates to 3kW for $4k compared to wind. Thus, the wind power option is approximately similar to PV. Except the wind can be self-manufactured, but probably has higher maintenance costs. However, if the wind turbine lasts 100 years, then we have a significant advantage. Further, if we could get a larger system than 20kW for wind - then we could be at an advantage in cost performance.

H from Aluminum

One way to generate hydrogen is by reacting aluminum with base such as NaOH.

This company promises $2000 home scale units for producing hydrogen at $1 per Kg


Steam Reformation of Hydrocarbons

  • This breaks down hydrocarbons into hydrogen and other byproducts (Usually carbon dioxide or carbon monoxide, althugh not always)
  • This is usually done with fossil fuels, but it could use renewable biofuels such as biodigester gas (either impure, or purified to pure methane)

Artificial Photosynthesis (Also Called Photocatalytic Production)

  • This uses catalysts that replicate some of the partial processes of photosynthesis to produce water from water and sunlight, or carbon dioxide and sunlight


  • This uses genetically modified microrganisms to produce hydrogen, either by modified photosynthesis, or by modified fermentation of sugar

See Also

Useful Links