OSE Specifications

From Open Source Ecology
(Redirected from Design for Manufacturing)
Jump to: navigation, search

Contents

Last updated Aug 2022.



HintLightbulb.png Hint: OSE Specifications reinforce the OSE Social Contract - and both should be consistent.


Summary

OSE Specifications are actionable principles encoded to guide the work of OSE. OSE specifciations means 4 main qualities: (1) open and collaborative, (2) modular construction set approach, (3) scalability, (4) product ecologies. Initially, OSE specifications were built to facilitate product design. As OSE evolved, the scope of OSE specifications expanded to (1) products proper, (2) enterprises built around these products and product ecosystems, (3) and transparency + collaboration around teaching our methods towards distributive enterprise. The scope reaches common products, product ecosystems embodied in physical infrastructures, and operating principles of societies as embodied in their institutions.

The scope seems overwhelming, however the unifying priniciple is that we must solve for the abundance mindset in society, which requires mechanisms for efficient production up to the institutions that create the infrastructures of civilization. Since all of these areas are just different scales or perspectives on exploring the abundance question - we must operate at all levels if our true interest is societal transformation and progress.

Regarding democratization of the technosphere, OSE Spec primarily means based on abundant, ubiquitous materials and resources.

Overview

The OSE Specifications - or fully written - the OSE Specifications for the Open Source Economy - are a broad set of principles defining the technical, social, and economic aspects of product development that leads to the open source economy. Products can be physical products, product service systems, and experiences as in the Experience Economy.

Open Source Ecology (OSE) is designing open source products according to the OSE Design Framework and OSE Specifications. The GVCS has been selected according to the Product Selection Metric. OSE Specifications are the favored features of OSE products. Most importantly, these mean: (1), open source; (2), modular (3), low cost, (4), lifetime design (5) performance competitiveness with industry standards; and (6), properties which lend themselves to distributive enterprise;

In general, machines are designed as Ecologies or Construction Sets of machines, not just machines per se.

On the mechanical front, OSE Specifications means that we build machines like a life-size Lego Set - simplest possible components that still do the job.

A quantitative assessment metric of OSE Specification is the OSE Specifications Metric Score

Introduction

Before you read further, please see the OSE Mission. OSE Specifications are a metric for assessing qualities that contribute to the creation of re-localized economic production, as a basis for community prosperity in an interconnected world.

The OSE Specifications are a standard aimed at defining and evaluating the criteria of products, services, and their production - which serve to promote the creation of abundance economies, and therefore, the creation of resilient communities. Abundance exists where a community uses its resource base in such a way that human needs and desires are provided abundantly - with significant surplus to fuel cultural and scientific progress.


GVCS Specifications - Core Values

More Specifications

These are the values of OSE that inform the development of the GVCS which are to be embodied in the development process, in the recruitment of volunteers, in its corporate structure, and in all operations, public and private:

Open Source

We freely publish our 3d designs, schematics, instructional videos, budgets, and product manuals on our open source wiki. We strive to harness open collaboration with a globally-distributed team of technical contributors. We value transparency of our operations, business model, strategic development, “code” (blueprints and designs), management information, and any other aspects that can lead to distributive economics. Commentary: Our main goal is to contribute to the creation of open culture, where sharing and collaborative development are valued over greed and exclusiveness. This type of culture promotes life and growth, as opposed to fear-based aggressiveness. Open source culture icludes publishing 'early and often' to expose errors and dead ends – where rapid growth occurs by adjusting to failure. Failing early allows solutions to be found early. Failure and dead ends are abundant in life – and the mark of a successful individual is their ability to respond to failure in a manner that leads to growth and transcendence.

Collaborative

upercooperators, not Superstars. Our best collaborators focus on collaboration, not on superior technical skill. Technical skill can be acquired more easily via a supercooperator, growth mindset.

Inclusive

In order to be collaborative a process must be inclusive. Our prime route to inclusivity is Swarm Technology

Modular

Components of the GVCS function as interchangeable modules. Motors, parts, assemblies, structural building blocks, and power units can interchange, where units can grouped together to diversify the functionality that is achievable from a small set of units. To see how the different parts fit together - see Product Ecologies.

Distributive Economics

We publish our business models openly so that others can replicate any enterprise. “Everything we know, you know.” This is intented to generate truly free enterprise and life-giving competition, as opposed to monopoly capitalism or militarism. In one word - distibutive economics are called sharing. In the political sense, this phenomenon may be described as decentralization engineering. It should be noted that information should be free, because the cost of distributing information is negligible. However, atoms or physical objects are not 'free' in the same sense, as significant human energy is required to produce and distribute physical goods.

The OSE Filter calls for a historic transfer of wealth from the few to the many, the core of distributive economics.

Low-Cost

The cost of buying or making our machines are, on average, 5-10x cheaper than buying from an industrial manufacturer- including an average labor cost of $25 hour for a GVCS fabricator. Cost standards are sufficient when they meet or exceed industry standards for the operating cost - all other things being equal. For example, if an electrolyzer can produce hydrogen on an equal or lower GGE basis, we are done.

Simplicity

We design for absolute simplicity without sacrificing performance standards. The most refined or elegant design is simple. Everything should be as simple as possible, says Einstein, but not simpler. Simplicity is a core tenet of Worse is Better. We start with simple functionality, evolve a simple interface, and when we do like Einstein suggests - we get elegance - or simplicity.

User Friendliness

Design-for-disassembly, simplicity, transparency, and open source documentation allows the user to comprehend, take apart, modifyservice, maintain, and fix tools readily without the need to rely on expensive repairmen. At the core we favor human-centered design, at a human scale. This contributes to the Economy of Affection.

DIY

DIY means that you have the option to Build Yourself. It doesn't exlude industrial manufacturing on a larger scale - but rather includes the possibility of industrial productivity on a small scale. The user gains control of designing, producing, and modifying the GVCS tool set. DIY is intented to promote the maker, doer, creator, non-consumer culture – in people who are interested in creating their own custom environment as opposed to accepting massively-standardized options. DIY, however, does not imply substandard or economically-insignificant production - as the product still could and should have industrial efficiency and high performance. High performance is not inconsistent with DIY culture, as long as the enabling tools and techniques are accessible. There is no limit to the tooling available in the DIY context - as long as the tools are appropriate, open source, and user-centered.

Closed-Loop Manufacturing and Material Cycle

Any product should never be a waste, but a feedstock for another process. Our project relies on recycling metal into virgin feedstock for producing further GVCS technologies - thereby allowing for cradle-to-cradle manufacturing cycles.

High Performance

Performance standards must match or exceed those of industrial counterparts for the GVCS to provide a comparable or better standard of living. Note that this is not inconsistent with DIY culture.

Industrial Efficiency

In order to provide a viable choice for a resilient lifestyle, the GVCS platform matches or exceeds productivity standards of industrial counterparts.

Ecological Design

Our products promote a conscious co-existence between nature and humans. The entire process and technology must fit the criteria for being environmentally friendly and Regenerative.

The product of interest must be good for the environment. Because much of the environment has been turned into deserts and deprived of biodiversity in general - is is better if the products that people produce help restore some of the natural balance. This is what we mean by Regenerative.

Resilience

The systems that we are designing are designed to be adaptable. This arises from the ability to modify, scale and replicate the components and systems to meet requirement of constantly changing conditions.


Antifragility

We design for Antifragility - which is deeper than adaptability, resilience, or robustness.

Systems Design

Our designs consider the whole system of life support, in terms of how the different machines and services interface with one another. Different machines can functions as modules in a wide array of integrated systems. We do not choose technologies with peak point performance, but with peak systems performance as they fit into a resilient community integrated with its natural life support systems. Part of the systems design is synergy – in that the GVCS is intended to attain its maximum potential when all of its components are working with one another. As such - any product must be designed from a ground-up, systems approach - as opposed to fitting into existing legacy structures.

Substitutability

Our products tend to the substitutability of common resources for less common or strategic resources. Substitutability also applies to the fact that any damaging process can be replaced by a more benign one.

Robustness

Applications of our work range from the 1st to the 4th worlds, from the city to the country, from high technology to low technology applications, at different scales of operation.

Design-for-Tolerancing

OSE designs for allowing the largest tolerances in manufacturing while maintaining specified performance. Allowing for the highest tolerances (dimensional, lengths, flatness, etc) - ie, accuracy with which parts are built can be kept to a minimum - is used in order to optimize for ease of fabrication. This puts a higher requirement on the assembly steps - in that the minimal tolerances require a higher understanding of of which tolerances are critical, and which are not important. However, since producing the parts are the more difficult step to obtain in an overall build - we shift to a higher build skill requirement, as opposed to a higher parts production skill/tooling/material requirement. This is intended for higher replicability, since parts/tools/materials are harder to procure than build skills. Build skills can be taught to anyone who is interested, and the build can also be automated. Because of this, OSE uses design-for-tolerancing to allow for wider distribution and access to various products.

Applied to the 3D printer as an example: we design to allow for the largest tolerances in part production. That means that the build process allows such parts to be used, without reducing performance. This also means that one has to understand which tolerances matter, and which don't, as the build stages later on address these tolerances by various adjustability mechanisms or means whereby the part tolerance becomes unimportant. For rod lengths, the way they are attached allows for significant differences without affecting performance - the relevant part is only that there is 8" of free travel on the rod. The way the ends attach, length differences are not important outside of cosmetic effects. For frame dimensionality, metal pieces can be inserted to the exact length required to make for a uniform frame - or frame inaccuracies are accounted later on during calibration. There is an autoparallel mechanism for Y axis (the bearings on the X axis into which the rods slide), there is an auto skewness correction mechanism based on physical stops. In future iterations we can add complete skewness correction with fiducials via software only. The end result is that as long as the bed is mounted flat - the y, y, z dimensions of the frame can be off up to 1" in difference while getting perfect prints!

Multipurpose Flexibility

Our tools are typically not dedicated devices, but ones that can be used flexibly in a wide range of applications.

Best Practice

we focus on optimization of our products to achieve the best possible design and functionality

Complete Economy

The work of OSE is intended to be a workable blueprint for a complete economy. Our designs are geared for a maker lifestyle on the part of community members. This is also known as a neo-subsistence lifestyle – where communities can provide all the requirements of a complete economy, such that trade is only an option, not a necessity.

Freedom from Material Constraints

The GVCS is intended to provide all the material needs of a community in an efficient way. This allows people to have free time, which allows people to choose their pursuits freely, beyond constraints of material scarcity. This is also known as High-Tech Self-Providing.

Renaissance People

Generalism vs. Division of Labor. Our designs focus on the needs of a modern villlage enjoying a high quality of life, as opposed to individual utilization. All of the technologies may be adapted to an individual's use, but division of labor is more desirable for achieving a complete economy in a community. However, we warn against overspecialization. In today's world, specialized education such as Ph.D. level training typically means that any Ph.D. is wholly ignorant in fields of endeavor other than their own. This is dangerous. Because specialized knowledge is so powerful - only careful coordination between disciplines can lead to societal progress in the positive direction. Because such coordination is limited in today's society, specialized information is used irresponsibly. For example, if an engineer ignores a connection to nature, or an economist misses the relationship of an investment to social well-being - then major natural and social catastrophes can be a likely result. Such disasters are a norm in today's society. Simply put - how can someone who is largely ignorant of how their discipline connects to another - be a responsible citizen? Or how can an entire country - by practicing nondemocratic principles - be a good citizen of the world? By design, these are impossibilities. The solution is for people to gain broader skill sets - which is certainly feasible in a digital world where one has access to unlimited learning opportunities. OSE believes that skills of physical production are an essential component to human well-being - personally and politically - which is being ignored as more people choose non-productive jobs as Symbolic Analysts.

Scalability and Fractality

The GVCS tools are designed to be scalable to different sizes of operations, from individual households to agglomerations of villages (cities). The design should be fractal, in that each unit of operation should be self-contained (complete) and resilient.

Village Scale

The GVCS is intended to be optimized for a village scale of about 200 people, or Dunbar's Number – as the number of people who can maintain face-to-face interaction.

Nonviolence

The GVCS is designed to provide for all the needs of a community without killing or stealing from others.

Amicable Social Contract

The OSE tool-set is designed to promote a just, equitable, and life-giving social contract for the communities of tomorrow. The basic requirement is lifelong learning and regenerative stewardship of land and resources, along with nonviolence. Thus, the OSE paradigm encourages positive human relationships - and this positive psychology should be embodied in the design of OSE-compliant products.

In general - an amicable social contract can be provided by productive tools that bring prosperity, while causing no harm.

Community and Family

OSE promotes the reconnection of people to one another as a result of increased freedom from material constraints. This reconnection also includes reconnection to one's true needs, to one's family, and to the global family of all living creatures.

Proven Techniques

We focus on time-proven concepts, techniques, and technologies. All are principles are generally regarded as common, historical knowledge or wisdom learned through eons of civilization. ==Cross-Disciplinary Integration We provide cutting edge practice in so far as they are integrations of knowledge from many fields and disciplines. We value unabashed boundary-crossing and cross-fertilization, drawing from as many cultures, regions, and time periods as possible.

Sufficiency

Our design focuses on sufficiency – ie, we understand that we need to reach a certain level of performance, and that is sufficient. This is one of the core principles required for appropriate technology: just because more features can be added, any feature addition has a cost and benefit. For OSE, the primary selection is collaborativeness. For example, if we do large scale collaborative development, it is useful to use simpler tools, such as FreeCAD 16, even though you can't do everything that FreeCAD 19 can do. But we emphasize access over features, and power users can use the advanced workflows. Given a choice of supporting higher and lower feature sets - OSE will favor the former. This is distinct from continuous addition of bells and whistles, or feature creep. The principle of Sufficiency means that a certain feature may be taken out, as opposed to added, in an improved version of a product. And the answer for OSE is 'both': we support small feature sets, but power users can of course use larger feature sets. OSE will focus on supporting the broader contributor pool, as power users can figure out the advanced features more easily with less OSE support.

New Economics

One aspect of OSE is that it allows for the creation of a resource based economy, where true wealth is based on the value of natural, primarily local resources, where wealth is created from adding value to natural resources by transforming them to human-usable form.

Flexible Fabrication

This is a mode of production distinct from specialization. In flexible fabrication, general purpose machinery is used by highly skilled workers to produce a wide array of products – as opposed to specialized machines, operated by highly deskilled workers, producing only a single item. Our means to flexible fabrication is the open source fab lab.

Technological Recursion

The flexible fabrication technology also allows producers to produce more complex machines and parts. This allows a local community to, eventually, attain the capacity to produce any technology known to humankind.

Industry 2.0

This is a concept that flexible fabrication, combined with a collaboratively-developed, global repository of down-loadable product design has the potential to become the new engine of production. This is particularly useful towards relocalization of productive economies and towards distributive economics. Industry 2.0 is a direct goal of OSE.

Permafacture

ecological fabrication with lifetime design.

Local Resources

The GVCS is fueled by local resources, such as water, sunlight, rock and soil. Via technological recursion,

Replicability

OSE work is intended to be replicable, self-replicating, and viral. The open source nature, low-cost, and simplicity of our designs are key to this.

Meaning

Technology, when used appropriately, is intended to reconnect one to meaning, and to natural ecosystems. Reconnection to nature can occur from constant interplay between humans and nature, as natural resources are stewarded responsibly to meet human needs by benign processes.

Appropriate Automation

We favor automation of production or other tasks whenever repetitive, difficult, dangerous, or otherwise unrewarding tasks can be carried out with computer assistance instead of human labor. We favor this if this truly increases quality of life and reduces toil, without loss of meaning, violence, or other negative systems consequences.

Long Term Approach

OSE is seeking long-term solutions on the 100 year scale into the future, not band-aids on superficial issues. We are looking at issues for the long haul, with lasting peace and stability for humanity as the goal.

Distributed Network

OSE is interested in creating a network of OSE Campuses that serve as points of light of human development. Such communities bring a positive influence in their surroundings, by re-integrating the economy and humans into harmony between themselves and nature..] This refers to the 1000 Global Villages concept. Thus, any OSE Campus does what a typical college town does to any community - it provides immense value and creates a place where people want to live.

Model Community

The OSE Village with the GVCS are intended to provide a positive, best-practice example of integrated, meaningful lifestyles along the principles of abundance and prosperity - as a shining point of light to inspire people in many walks of life.

Land and Resource Stewardship

Each OSE facility functions as a land steward. Land is not for sale, but is preserved for ever as a permanent site of human heritage and cultural growth. Resources are stewarded so that they improve in quality with time, as opposed to becoming depleted.

Iconoclastic Innovation and Transformation

OSE favors iconoclastic approaches which address issues at the root, not symptoms – towards addressing pressing world issues (war, poverty, corruption, distribution of wealth, disease, etc.). We are not looking for mass-culture compromises swayed by political or special interests, but for authentic solutions based on virtues common to all humankind.

Absolute Creative Approaches

We do not promote destroying anything, just creating a better solution that makes the old paradigm obsolete. We do not hate any group or politic, because we are all in this together. We believe in positive psychology, inspiration, and bringing out the virtues in people – by appealing to their absolute creative.

Realistic Immediacy

We favor a realistic approach that can be implemented today, as opposed to futuristic dreaming. We believe that we have sufficient knowledge and technology today to create an abundant lifestyle for everybody. We focus on a tool set designed for a nominal 200 person village - according to Dunbar's number. This allows for sufficient division of labor to cover just about any technology to be produced locally, while remaining small enough such that organization of such a community is manageable.

Proper Scale

We look at the village scale of about 200 people as the optimal scale of human organization for several reasons. First, it's a historically proven number. Second, it follows Dunbar's Number to allow for persistent and meaningful social interaction. Third, it is easily manageable from an organizational point of view without requiring bureaucratic overhead. Fourth, it is sufficiently large to allow specialization via division of labor. Fifth, it allows for a walking- or biking-distance community. Sixth, it is a basic building block - where larger communities may be designed as units of this small scale for the highest possible resilience - as opposed to organization on a larger scale. Seventh, it has been pointed out by the industrial economist, E. F. Schumacher, in his seminal book, Small is Beautiful, that human organization simply breaks down after it reaches a certain scale.

One World Approach

We believe that people in general should live within the means of global resources without depleting their quality or polluting them. This is opposite of what happens in general today. In other words - we are all in this together - and taking care of others leads to our own integrity and happiness. There is no 'us and them.' We are all part of a greater system.

We also have no idea how big the universe is. Taking this to fuel our humility - it is useful for us to collaborate on discovering more of the universe. Our curiosity makes us explore - so a useful framework to consider is how to best explore the universe together - not get stuck on not getting along with one another.

How does this apply to production of a modern standard of living? It's that we should all consider thriving as a viable option - and enter into a non-scarcity mindset - as the universe is for practical purposes unlimited. We live in one world, but that worlds is greater than we can imagine.

Miniaturization

We believe that the scale of successful human organization at which modern-day technology can be maintained can be scaled down to the village scale - under the assumption of open information flows. This includes industrial efficiency on a small scale - as we emphasize that thriving must be accompanied by best practices and integrated efficiencies.

Radical Abundance

We believe that there are abundant resources for everybody, and that human social organization should favor institutions that promote abundance, as opposed to scarcity. We favor a technological infrastructure that moves beyond resource scarcity as a dominant underlying force in all of civilization.

Design for Fabrication

Design for Fabrication in the OSE context means that fabrication takes the simplest, most efficient, least time consuming path. The first key to this is simplicity of design. The second key is using stock, widely-available, low-cost components to minimize fabrication requirements of any hardware build. The third key is modularity, where hardware is made of modules, which if available - do not need to be fabricated. Read more about Design for Fabrication of Mechanical Hardware.

Design for Collaborative Production

Design-for-fabrication may take on the form of design-for-Collaborative-Production. Collaborative production is social model of production, and digital fabrication may be combined with Collaborative Production to make such social production even more efficient.

Documentation

Documentation is the key to the replicability of practices and of hardware.

Minimum Set

an integrated set consists of the minimum number of parts or modules, while still allowing many different functions and services. Consistent with concept of Technological Degeneracy.

Integrated, Complex Product System

Product systems that are not a single, disintegrated product, but a product ecology/set/system with complex interactions between parts. Examples- a MicroFactory Workshop; an Integrated Pest Management Aquaponic Greenhouse/Nursery; an Autonomous Home; a Perennial Polyculture Orchard; or a Village/Settlement. As opposed to: a Gear Factory; Hydroponic Lettuce Greenhouse; Tract Home; an Apple Orchard.

Minimum part count

design for minimum part count

Exponential design

Design for Disassembly

By Biomimicry, products should be able to be recycled into constituent parts so they can be reused or recycled. This is where Design-for-Disassembly (DfD) comes in.

DfD may be facilitated by:

  1. Fasteners as opposed to permanent connections
  2. Easy access to fasteners, as opposed to unreachable or hidden parts
  3. Transparent design - as opposed to black-box design where things are covered in permanent enclosures - either on grounds of safety or trade secrecy

Transcend and include

When looking for solutions, that no biggertonarrive at a solution

Economic significance

common-use goods

Distributive Economics

Distributive economics refer to economic models that tend to distribute economic power as opposed to monopolizing this power.

Systems Design

Systems design refers to design of economic paradigms which consider the whole human and natural ecosystem, and the relationships involved, not just an isolated part of that system. For example, non-systems thinking may lead one to conclude that a modern steam engine for transportation is a bad idea compared to biodiesel or fuel alcohol because the thermodynamic efficiency of a steam engine is two times lower than that of diesel engines or gasoline engines. The systems design perspective will claim that the steam engine is a great idea, because biomass pellets can be used as fuel, and the yield of cellulosic biomass per acre is about 10 times higher than the yield of oil or alcohol. The systems thinker will continue, by stating that if the whole system is considered, biomass pellet production is much simpler to accomplish, and that biomass-growing areas can be integrated with other uses such as orcharding or livestock raising, and the systems thinker will continue to make other claims that such an energy source allows for absolute decentralization of production and resilience of communities using the simplest means possible. The point to be made is that the systems thinker can continue to make a large number of claims on how a particular activity is desirable based on a number of systems connections, which the non-systems thinker dismisses as simply not being part of the question.

We believe that destructive non-systems thinking is so pervasive in our society, that in general, individual and societal decision-making is completely partisan, thin on logic, and downright retarded. We are including a metric for systems design in the OSE Specifications to raise awareness of this issue, with a hope, which even if futile, attempts to bring a glimmer of light to the situation.

Economic Significance

Economic significance refers to the overall economic importance of a given product or service. The assumption here that economic significance is defined on the basis of relevance for meeting the material needs of humans. For example, fuels and tractors constitute multibillion dollar global markets, and are thus economically significant. On the other hand, plain discussion may have little economic significance, if is not more than hot air.

Open Documentation

Open content

We begin with open content as a foundation – content that is free of restrictions on use or dissemination. The optimal license for content that we promote is the public domain. This keeps it simple from the practical and legal perspective. We have a philosophy that the users should decide for themselves as to how to use the information. We support open licensing. We are not interested in policing.

We believe that to claim something as ‘one’s own’ is arrogant, as it does not address the fact that any single ‘invention’ is simply a small additional to a large pool of existing knowledge that made the ‘invention’ possible. We believe that there is no point in trying to police the patenting of forks, as are simply so many different forks or development paths that could be taken nonetheless: creativity is unlimited. We believe that the more we contribute to the commons, the more new content will be generated.

Readily accessible or downloadble documentation and design

Distributed information in the computer age is made most readily accessible if it is available for immediate download from the internet. If material is available in electronic format, it may be manipulated or utilized readily with software tools. For example, digital designs may be edited or used immediately in CAD or CAM. If CAM formats are available, then data at one point in space can be readily transformed into a physical object at another point in space, in the presence of digital fabrication capacities.

Design Drawings

This is a start towards replicability.

Bill of Materials (BOM)

Next to design drawing, the BOM is the second most important towards replicability. This is a detailed listing of all parts used, sourcing, and prices. Availability of the BOM saves the potential builder countless hours of searching for part availability and for reasonable pricing. Relevant comments should be made alongside the BOM, such as, quality or reliability of certain vendors, their quality of service, and any other useful comments. The only difficulty with a BOM may be that if the audience is global, sourcing may not be readily available or shipping may be prohibitive, so local substitution of parts must be made. If a BOM is available, then the building of a specific product can commence immediately: there is no guessing which parts would work, or which supplier is reliable. At best, the process for one-off individual production can be as follows:

  1. an individual decides that they need a certain product
  2. they look that product up on an online repository of open source products, download fabrication procedures and parts lists
  3. purchase parts locally all on the same day if they are located in an urban area where many suppliers are available
  4. and start building a certain project.

All these steps can potentially be completed in one day when the BOM is available. Open design drawings and plans are only one aspect, but the critical point to enabling immediate production is the availability of BOMs, as the last step prior to actual fabrication.

Under this scenario, a realistic possibility emerges that a large number of individuals discontinue purchasing slave goods from who-knows-where, and begin to fabricate them locally. This is feasibile on the individual level for anyone equipped with a robust Fab Lab, or when small groups (a few to a dozen people) get together to purchase low-cost, open source, digital fabrication equipment. These people could operate out of backyard garages, rented workshop spaces, co-working facilities, or other community supported manufacturing operations. The types of products that yield themselves particularly to this type of production are those items that fall beyond the class of disposable goods, and are more or less long-use items. These items include electronics, mechanized tools, semi-heavy machinery, green vehicles, renewable energy systems, among others.

Transformative Nature of Enterprise

We are interested in transformative economics, or those economics which tend towards community and global resilience, while having qualities that, proactively, move the world away from: concentration of societal power; perennial warfare; loss of meaning; bureaucracy; globalization of economic activity; newspeak; loss of freedom; and so forth.

Transparency of Production Model and Development Process

The development process for products, and their production model, should be transparent to any interested observer. This allows for study of, input into, and improvement of the topic of interest. Transparency allows feedback loops to become active, and empowers those who are interested in learning more about a topic. Transparency is one of several qualities of a distributive, economic process.

Transparency of some program implies that the program is open to suggestions, correction, or replication of itself, stemming from an ethical foundation of the given program. Therefore, tools such as non-disclosure agreements, patents, trade secrets, and other means of protectionism are inconsistent with the creation of transparency.

Development Process

1. Participation in the development process is entirely voluntary. No compensation for alienation is necessary. As a result, the best designs are produced from the commitment of passionate stakeholders.

2. Anyone may join or leave the development group at any time

3. Collaborative development process utilizes the input of diverse stakeholders

4. Steps and results of the development process are documented

Creation of Post-Scarcity Levels of Production

Post-scarcity levels of production imply the availability of effective tools of production, including both hardware and techniques - which allow for the ample meeting of human needs. Post-scarcity levels of production also imply that local, nonstrategic resources can be utilized effectively, reliably, and with the capacity to produce significant surplus. The goal of attaining post-scarcity levels of production of something are thus synonymous with a particular community being able to transcend physical survival as a basis for evolving to pursuits beyond mere survival.

Simplicity and Low Cost

The design and implementation of any product or service should be the simplest from both the fabrication and cost perspective, such that it is the most readily replicable. Attaining simplicity is indeed the most difficult design challenge. Most people confuse high performance with extra features, because they externalize the hidden liabilities that accompany the extra features. Simplicity is synonymous with efficient resource use. Simplicity should also apply to the fabrication procedure of an object. As such, simplicity is also synonymous with low cost. The basic design philosophy of OSE is to include simplicity in design and fabrication - ie, design-for-fabrication should be applied.

Lifetime

(Note: For mainstream reference on lifetime design, see the work of Saul Griffith)

Simplicity of design promotes the features of lifetime, modular, and scalable design-for-disassembly (DfD).

Lifetime design implies that the value of a product does not depreciate over time. This implies freedom from labor required to replace a certain product, which has direct implication for one's access to free time.

Modular design is a design which allows different modules to be used and interchanged, giving the user control over and flexibility with the object of use.

DfD means that parts of modules may be replaced readily, by taking the module apart. This has profound implications to lifetime design.

DfS is more than a design that can be scaled. It is the principle of designing things with ease of scalability as one of the features - ie, design that can be scaled easily. This is a slight improvement over design that can be scaled, in that DfS includes explicit features that make scalability easy.

Scalability means that a basic building block can be used to make larger or smaller versions. This contributes to low cost and efficiency.


Multipurpose Modular Design

Objects should be designed so that they are made as building blocks, or modules, of other or larger objects. This way, objects can be modified. Instead of a whole object having to be replaced to add new functionality, a module may be added. This gives products a flexibility that is built into their very nature, such that the user has additional control with minimum expense. Modularity may sometimes be synonymous with inter-operability, and may sometimes be synonymous with scalability. It may contribute to lifetime design if an object is 100% modular and each module may be replaced. Modularity also means that an object may function as a building block of other objects. In all cases, modularity implies that an object may be modified. The combination of flexibility, adaptability, scalability, interoperability are desirable. These features expand the range of applications, increase lifetime, reduce cost, as well as provide and retain high value. In a material world, these are features that contribute to wealth and prosperity. In a nutshell, modularity provides large value and has low associated costs. These are good implications for individual and community well-being.

If modular design is followed, then the type of interoperability of using building blocks leads us to a Pattern Language of technology. In this pattern language, the modules or building blocks serve as the sentences of a larger language, or technology infrastructure.

Scalability

Design-for-Scalability (DfS). Products should be designed so that they can be scaled up or down - such as by addition of new modules, or using multiples of a part in parallel. For example, a solar concentrator system designed according to the principle of scalability should be a linear design (see Solar Power Generator), so that it could be enlarged either by lengthening or widening the array. Scalability can be Intensive Scalability or Extensive Scalability.

Localization of Material Sourcing and of Production

For community resilience, ability to use local resources is key. While it is important that a community have this ability for essential needs, it is optional, though desirable, for other nonessential items.

Using local resources may necessitate that a given community have additional technology to produce a certain item. For example, if a given community does not have the conditions to grow a certain crop easily, it may want to invest in the additional technology required to grow that crop successfully. Or, if a certain community does not have adequate water, it should invest in well-drilling or roof-catchment technology, instead of importing water from unsecured sources.

A community should thus, in general, strive to increase its technology base to accommodate the provision of all essentials, and not settle on its ability to trade to procure these essentials, as trade may be vulnerable to disruption. Trade is quite acceptable for non-essential items, such as musical instruments, since disruption of such supply does not threaten the survival of a community. The level of technology in which a community is autonomous should be determined on practical grounds.

Moreover, in today's world, we already hear about 'produced locally.' We should add 'sourced locally' to our vocabulary - as resilience implies not only local production, but also local sourcing. Local sourcing typically requires that a community have additional technological infrastructure and knowhow for providing the necessary feedstocks.

Localization Levels

  • Level 1 - production is local
  • Level 2 - sourcing of materials used in production is local
  • Level 3 - raw material production is local
  • Level 4 - production machinery used in the production process above is open source and locally fabricated

Localization applies to the creation of natural economies, or those economies based on the substance of their own, natural resources, free of supply chain disruptions.

An example of Level 3 is that local aluminum is made by Smelting aluminum from local clays.

If localization is taken to all the 4 levels, for all necessities of sustaining its population - that means that a region is autonomous, and as such, has no built-in tendency to wage war for others' resources. This is the critical point of localization - its benign effect on global geopolitical struggle. In simple words, people don't kill and steal.

Economic Feasibility and Replicability

Minimization of Waste, Overhead, and Bureaucracy

The key point to the competitiveness of agile, open source enterprise is its lean structure with minimal overhead. Minimization of waste occurs by collaborative development, such that R&D costs are shared by a number of stakeholders. Competitive waste is eliminated by open enterprise giving services away rather than competing for market share, which is the ethical marketing strategy for open enterprise.

Other strategies for keeping overhead low are crowd-funding the production facility, such as in Factor e Farm's case. We also propose paperwork reduction by operating as an un-incorporated entity, with contractually-based fiscal fiduciaries and liability management, operation in the Republic via private contract, and by in-house legal literacy.

Product Evolution

A process should be in place for continued maintenance and development of a product. This could be a support community, foundation, or users.

Fabrication Facilities

Concrete Flexible Fabrication mechanism exists for others to purchase the product at reasonable cost. This is a means to assuring that a diversity of suppliers exists, such that monopoly is avoided.

Open Franchising or Open Business Model

This point defines how easily one can obtain access to replicable enterprise design. See our motivation with respect to Open Business Models, as described under the OSE License.

There is a number of details that goes into enterprise replications. These are all the standard details found in a Business Plan, plus the actual technical details that go into that plan, such as designs and CAD, fabrication procedures, BOM and sourcing information, economic analysis, ergonomic analysis, and so forth.

If you are interested in replicating an enterprise, then please inquire with us regarding practical considerations. For those interested in replication, we are looking for long-term commitment to provide the necessary due diligence of business model documentation.

Startup Assistance

Producer training is the key to assisting others to start up enterprise. Dedicated workshops should be available for others to learn the trade. OSE currently offers a one year immersion program, focusing on enterprise replication. See OSE Chapters Concept

Methods and Strategic Approaches

  1. Open – Open Source Ecology endorses open source culture of sharing and collaborative development throughout, towards the end of distributive economics. This applies at the level of our process, organizational structure, business and products. On the process level, we encourage others to collaborate openly, yet respectfully of other developers' needs. To this end, we are aiming to create collaboration structures and platforms that allow others to collaborate freely, and to publish meaningful results openly. We seek to design all of our operations to be consistent with this principle. We encourage everybody on the development team to be transparent about their work, and to ask openly for collaborative assistance. We encourage everybody to give information away for free – as the cost of sharing information is zero
  2. Distributive Economics - We recognize the challenges of sharing information openly – in that someone else can 'steal' an idea and capitalize on it. We address this issue by encouraging people to publish openly, so that prior art makes information accessible to all, and therefore, making information un-patentable and therefore incapable of being appropriated. In order to capture value, we encourage humans to organize around information resource commons, while building in a physical, productive infrastructure to convert information into the substance of modern-day living via benign, industrial processes
  3. Notes on Patents. These make sense only in a world based on scarcity. We encourage each community that adopts OSE principles to build complete, open source, economic productivity – where true wealth can be generated easily. In this case, what is the need for patents? If a community can provide all of its needs - then we enter into the concept of sufficiency. State-of-art point technologies that optimize one feature of performance are not necessarily useful for an ecological tool set. We are interested more in overall, or ecological, performance - as opposed to point performance.
  4. Creative Approach - There is a number of movements that cater to fears regarding the end of the world or other comprehensive collapse scenarios. Our approach is intended to empower people from a perspective of what is a-priori favorable and benign - whether or not any cataclysm is on the horizon. IT is important to underscore that we focus on positive psychology and transcendence, which we favor over an approach based on fear, because fear-based response is not as likely to create long-lasting solutions.
  5. Modular, lifetime design – The core of lifetime design is design-for-disassembly and modularity. Design-for-disassembly is synonymous with user ability to 'look under the hood' of a certain device. Modules are interchangeable units of functionality.
  6. Closed Loop Manufacturing – OSE endorses closed loop eco-industry, where waste does not exist as the waste is turned into feedstock for other processes.

Components of OSE Specifications

OSE Specifications cover a number of aspects of economically-significant production, covering the development and production aspects:

  • Economic significance
  • Open documentation
  • Distributive economic nature
  • Transformative nature of enterprise
  • Systems design
  • Transparency and participatory nature of production model and development process
  • Creation of post-scarcity levels of production
  • Simplicity and low cost
  • Lifetime, modular design; design-for-disassembly; design-for-scalability
  • Localization of material sourcing and of production
  • Ecological qualities
  • Economic Feasibility and Replicability
    • Minimization of waste, overhead, and bureaucracy
    • Product Evolution
    • Fabrication Facilities
    • Open Franchising or Open Business Model
    • Startup Assistance

Calculation of a Metric Score

See OSE Specifications Metric Score

Summary

In summary, we aim to raise the standards embodied in open source product development efforts by articulating the possibilities. OSE Specification describes all the desirable features that can be embodied in open economic development, under the assumption that maximum advancement of distributive production is the best route to human prosperity.

OSE Specifications, as applied to technology - imply liberatory technology - defined as technology which serves the true needs of people and liberates time for other pursuits beyond survival. This is distinct from technology which controls people - where in today's world - with ever-advancing technology, people enjoy less free time.

Application of OSE Specifications to Assessing the Liberatory Potential of Technologies

OSE Specifications, when applied to production of physical products, allow for transparent assessment of the overall openness or accessibility of so-called open source products. We say 'so-called' because many projects that are declared to be open - are open only in a limited way. OSE Spec exposes the true level of openness.

This specification is intended to help people assess distributive production aspects of projects, by distinguishing between the various degrees of ‘opensource-ness’ embodied in projects. This is because some projects call themselves ‘open source’ when only a small portion of the hardware, or even no physical portion, is open source.

For example, in the case of the OS Green Vehicle, the only open source component is an apparent design process, but the output of the design process is proprietary. As quoted from the website, ‘Your rights to use, modify and re-distribute any data from this web site are limited.’ Moreover, the components used in the car are proprietary. Therefore, the OS Green Vehicle has a low OSE Specifications metric score.

Access refers to use for both private or market purposes. The specification is not neutral in its goals, just as no technologies are ever neutral. The intent goes so far as to point out the nuances that contribute to a particular direction of: (1), promoting ecological integrity, (2), contributing to the highest possible quality of life, and (3), creating the widest possible distribution of wealth. Because the open source method of product development has immense potential in transforming the economic system, the OSE Specification aims to address the evaluation of positive change endorsed by various open source projects.

The scope of OSE Specifications is far-reaching: it considers all the steps necessary for a product to be user-accessible. This includes open access to relevant information and affordable access to physical products. The goal is distributive economics.

OSE Specification stipulates access to physical production facilities that can build wealth in re-localized communities. But OSE Specifications go even further: replication and viral spread of wealth - or distributive production. OSE Specifications address the means for replicating the production process itself. This includes not only self-replicating machines and systems, but the development of open business models, training materials, and apprenticeships for entrepreneurs. As the final step, we consider the availability of capitalization assistance within the metric. The capitalization assistance may be part of a new entrepreneur's apprenticeship - where, for example - real products can be made and sold within the apprenticeship. We redefine the 'capital' in 'capitalization assistance' from 'money' to 'the ability to produce just about anything required for business startup at low cost.'

Such level of commitment to the success of replication may imply a hidden agenda behind this program. Indeed there is: the greatest possible empowerment of people and communities to be the masters of their destinies, by unleashed human productivity fueled by open access to information and enabling hardware.

OSE Spec addresses access to both producers and users - both on the individual and community scale. Production could occur by do-it-yourself means on the individual scale in flexible fabrication facilities. The community scale promotes division of labor, and therefore a high standard of living. The OSE Spec addresses the availability of blueprints or digital designs, which can be used readily in manual or automated, computer-controlled fabrication facilities.

Links