

Overview of Topics

EARLY AGE CONCRETE

Plastic shrinkage – shrinkage strain associated with early moisture loss

Thermal shrinkage – shrinkage strain associated with cooling

LATER AGE CONCRETE

Drying shrinkage -shrinkage strain associated with moisture loss in the hardened material

Deformations occur under loading

- Elastic
- Viscoelastic

When does concrete crack?

To understand this, we must consider the way concrete deforms under loading:

- Concrete exhibits both elastic and viscous (time-dependent deformation) behavior
- · Concrete is a viscoelastic material
- Viscoleastic behavior can be described using rheological models with 2 components:

linear elastic spring

linear viscous dashpot

Pure Linear Elastic Behavior

- · Visualized by a spring
- Deformation quantified by Hooke's Law Stress(t) = E x strain(t)

where E is the spring constant

 Deformation is instantaneous; no continued deformation with time

Pure Viscous Behavior

- Visualized by a dashpot
- Piston displaces a viscous fluid in a cylinder with a perforated bottom
- Deformation quantified by Newton's Law of viscosity
 ἐ(t) = σ(t)/η

where $\dot{\epsilon}$ is the strain rate de/dt η is the viscosity coefficient

When does concrete crack?

To understand this, we must consider the way concrete deforms under loading:

- Concrete exhibits both elastic and viscous (time-dependent deformation) behavior
- · Concrete is a viscoelastic material
- Under constant load, deformation increases with time (creep)
- Under constant strain such as when a concrete member is under restraint - stress decreases with time (stress relaxation)
- Therefore, STRESS RELAXATION REDUCES ACTUAL STRESSES IN CONCRETE!

Drying Shrinkage and Creep

- <u>Drying Shrinkage</u> strain in hardened concrete caused by loss of water; occurs in the paste; is restrained by the aggregate
 - $\underline{\text{Chemical Shrinkage}}$ shrinkage due to change in solid volume during hydration
 - <u>Autogenous Shrinkage</u> shrinkage due to "self-dessication" during hydration
 - $\underline{\text{Carbonation Shrinkage}}$ shrinkage due to reaction with CO_2
- <u>Creep</u> time-dependent strain in hardened concrete results from applied stress; occurs in the paste; is restrained by the aggregate

Drying Shrinkage

- Inadequate allowance for drying shrinkage can lead to cracking and warping or curling
- Must provide adequately spaced joints in slabs and pavements
- Joints define where the crack will form, rather than allowing for random crack formation
- Can then seal joints to prevent moisture ingress

Mechanisms

Three phenomena are believed to contribute to drying shrinkage, resulting in a volumetric contraction:

- (1) Capillary stress, P_{cap}
- (2) Disjoining pressure, P_{dis}
- (3) Changes in the surface free energy, $P_{\rm sfe}$

Each are related to:

- Porosity and pore structure in the HCP
- Van der Waals bonding in the C-S-H
- High surface area of the C-S-H
- · Microporosity of the C-S-H

Capillary Stress

- Active in Domains 1 and 2, between RH 95% and 45%
- Water held in small capillary pores is partially under the influence of surface interactions exerted by the pore walls
- · At suitably low RH, water can be lost
- In this case, water is under hydrostatic tension and a meniscus forms
- The water exerts a corresponding hydrostatic compression on the pore walls, perhaps inducing a reduction in pore size
- Stress induced is related to the RH; higher stresses as RH approaches 45%; no capillary stress beyond RH of 45% as menisci are not stable

Disjoining Pressure

- Adsorption of water at the surface of the C-S-H layers creates a disjoining pressure
- The pressure increases with increasing RH (or water layer thickness)
- When the pressure exceeds the strength of the Van der Waals bonding between the C-S-H layers, the layers are forced apart, creating a dilation
- C-S-H exists in this dilated state after hydration
- On first drying, water is lost and the disjoining pressure decreases; layers of C-S-H are brought closer by Van der Waals attraction, resulting in a net volumetric shrinkage
- Occurs to RH ~45%

Surface Free Energy Responsible for shrinkage below RH 45%; greatest below 20% As the most tightly held water is removed, the surface free energy of the C-S-H grows A pressure is generated, proportional to the surface free energy and the surface area This pressure leading to compression of the solid

Carbonation Shrinkage Atmospheric CO₂ will react with hydration products leading to irreversible shrinkage due to water loss: Ca(OH)₂ + CO₂ → CaCO₃ + H₂O C-S-H + CO₂ → C-S-H + CaCO₃ + H₂O Note: the C/S ratio of the product C-S-H will be less than that of the reactant C-S-H Probable mechanisms: Water loss Rearrangement of C-S-H structure

Creep

<u>Creep</u> - time-dependent strain in hardened concrete results from applied stress

Similarities to shrinkage:

- · Strain-time curves
- Magnitude of deformation
- · Only partially reversible
- · Paste related deformation
- · Aggregate restrains deformation
- · Mechanisms lie in changes in C-S-H
- · Affected by largely the same parameters

Basic creep - creep without drying (100%RH)

<u>Drying creep</u> – when concrete is under load and also exposed to low RH environment

total strain > elastic strain + shrinkage strain + creep strain

• the drying creep is the additional strain that occurs

Total creep - sum of basic and drying creep

<u>Specific creep</u> = creep strain/applied stress 10⁻⁶/lb/in² or 150x10⁻⁶/MPa are typical values

Creep coefficient = creep strain/elastic strain

Mechanisms

Like drying shrinkage, creep in concrete likely results from loss/movement of adsorbed water in the HCP, leading to a rearrangement of the C-S-H structure and porosity.

Driving force IS different!

In addition, with creep there may be some additional factors which contribute to the deformation:

- effects of microcracking in TZ
- additional effects of drying during creep
- delayed elastic strain in the aggregate (which may receive more of the load over time)

Mechanisms

Role of Moisture in Creep:

- The presence of a sufficient amount of adsorbed water between C-S-H layers may allow for slip to occur under shear stress
- With applied stress, water held in micropores may migrate to larger capillary pores, resulting in a net contraction
- New bonds may form in the C-S-H due to moisture migration and slip

Creep: Effect of Temperature Creep may increase linearly with temperature to 175F(80C) Above 175F(80C), some report continued linear increase in creep, while other report a maximum at 175F(80C)

